Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JAMA Neurol ; 81(6): 619-629, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619853

RESUMO

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Neuroglia , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Neuroglia/patologia , Neuroglia/metabolismo , Estudos Transversais , Estudos Retrospectivos , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Pessoa de Meia-Idade , Neuroimagem , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Autopsia
2.
J Mol Evol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652291

RESUMO

The principle of continuity demands the existence of prior molecular states and common ancestors responsible for extant macromolecular structure. Here, we focus on the emergence and evolution of loop prototypes - the elemental architects of protein domain structure. Phylogenomic reconstruction spanning superkingdoms and viruses generated an evolutionary chronology of prototypes with six distinct evolutionary phases defining a most parsimonious evolutionary progression of cellular life. Each phase was marked by strategic prototype accumulation shaping the structures and functions of common ancestors. The last universal common ancestor (LUCA) of cells and viruses and the last universal cellular ancestor (LUCellA) defined stem lines that were structurally and functionally complex. The evolutionary saga highlighted transformative forces. LUCA lacked biosynthetic ribosomal machinery, while the pivotal LUCellA lacked essential DNA biosynthesis and modern transcription. Early proteins therefore relied on RNA for genetic information storage but appeared initially decoupled from it, hinting at transformative shifts of genetic processing. Urancestral loop types suggest advanced folding designs were present at an early evolutionary stage. An exploration of loop geometric properties revealed gradual replacement of prototypes with α-helix and ß-strand bracing structures over time, paving the way for the dominance of other loop types. AlphFold2-generated atomic models of prototype accretion described patterns of fold emergence. Our findings favor a ?processual' model of evolving stem lines aligned with Woese's vision of a communal world. This model prompts discussing the 'problem of ancestors' and the challenges that lie ahead for research in taxonomy, evolution and complexity.

3.
F1000Res ; 12: 267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069849

RESUMO

Background: Variants of concern (VOCs) have been replacing each other during the still rampant COVID-19 pandemic. As a result, SARS-CoV-2 populations have evolved increasingly intricate constellations of mutations that often enhance transmissibility, disease severity, and other epidemiological characteristics. The origin and evolution of these constellations remain puzzling. Methods: Here we study the evolution of VOCs at the proteome level by analyzing about 12 million genomic sequences retrieved from GISAID on July 23, 2022. A total 183,276 mutations were identified and filtered with a relevancy heuristic. The prevalence of haplotypes and free-standing mutations was then tracked monthly in various latitude corridors of the world. Results: A chronology of 22 haplotypes defined three phases driven by protein flexibility-rigidity, environmental sensing, and immune escape. A network of haplotypes illustrated the recruitment and coalescence of mutations into major VOC constellations and seasonal effects of decoupling and loss. Protein interaction networks mediated by haplotypes predicted communications impacting the structure and function of proteins, showing the increasingly central role of molecular interactions involving the spike (S), nucleocapsid (N), and membrane (M) proteins. Haplotype markers either affected fusogenic regions while spreading along the sequence of the S-protein or clustered around binding domains. Modeling of protein structure with AlphaFold2 showed that VOC Omicron and one of its haplotypes were major contributors to the distortion of the M-protein endodomain, which behaves as a receptor of other structural proteins during virion assembly. Remarkably, VOC constellations acted cooperatively to balance the more extreme effects of individual haplotypes. Conclusions: Our study uncovers seasonal patterns of emergence and diversification occurring amid a highly dynamic evolutionary landscape of bursts and waves. The mapping of genetically-linked mutations to structures that sense environmental change with powerful ab initio modeling tools demonstrates the potential of deep-learning for COVID-19 predictive intelligence and therapeutic intervention.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/genética , Haplótipos/genética , Pandemias , Estações do Ano
4.
Front Biosci (Landmark Ed) ; 27(4): 128, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35468687

RESUMO

Recruitment is a pervasive activity of life that is at the center of novelty generation and persistence. Without recruitment, novelties cannot spread and biological systems cannot maintain identity through time. Here we explore the problem of identity and change unfolding in space and time. We illustrate recruitment operating at different timescales with metabolic networks, protein domain makeup, the functionome, and the rise of viral 'variants of concern' during the coronavirus disease 2019 (COVID-19) pandemic. We define persistence within a framework of fluxes of matter-energy and information and signal processing in response to internal and external challenges. A 'triangle of persistence' describing reuse, innovation and stasis defines a useful polytope in a phase space of trade-offs between economy, flexibility and robustness. We illustrate how the concept of temporal parts embraced by the perdurantist school provides a processual 4-dimensional 'worm' view of biology that is historical and atemporal. This view is made explicit with chronologies and evolving networks inferred with phylogenomic methodologies. Exploring the origin and evolution of the ribosome reveals recruitment of helical segments and/or large fragments of interacting rRNA molecules in a unification process of accretion that is counteracted by diversification. A biphasic (bow-tie) theory of module generation models this frustrated dynamics. Finally, we further elaborate on a theory of entanglement that takes advantage of the dimensionality reduction offered by holographic principles to propose that short and long-distance interactions are responsible for the increasingly granular and tangled structure of biological systems.


Assuntos
COVID-19 , Humanos , Filogenia
6.
BMC Biol ; 20(1): 20, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039029

RESUMO

BACKGROUND: Africa is an important watershed in the genetic history of domestic cattle, as two lineages of modern cattle, Bos taurus and B. indicus, form distinct admixed cattle populations. Despite the predominant B. indicus nuclear ancestry of African admixed cattle, B. indicus mitochondria have not been found on the continent. This discrepancy between the mitochondrial and nuclear genomes has been previously hypothesized to be driven by male-biased introgression of Asian B. indicus into ancestral African B. taurus. Given that this hypothesis mandates extreme demographic assumptions relying on random genetic drift, we propose a novel hypothesis of selection induced by mitonuclear incompatibility and assess these hypotheses with regard to the current genomic status of African admixed cattle. RESULTS: By analyzing 494 mitochondrial and 235 nuclear genome sequences, we first confirmed the genotype discrepancy between mitochondrial and nuclear genome in African admixed cattle: the absence of B. indicus mitochondria and the predominant B. indicus autosomal ancestry. We applied approximate Bayesian computation (ABC) to assess the posterior probabilities of two selection hypotheses given this observation. The results of ABC indicated that the model assuming both male-biased B. indicus introgression and selection induced by mitonuclear incompatibility explains the current genomic discrepancy most accurately. Subsequently, we identified selection signatures at autosomal loci interacting with mitochondria that are responsible for integrity of the cellular respiration system. By contrast with B. indicus-enriched genome ancestry of African admixed cattle, local ancestries at these selection signatures were enriched with B. taurus alleles, concurring with the key expectation of selection induced by mitonuclear incompatibility. CONCLUSIONS: Our findings support the current genome status of African admixed cattle as a potential outcome of male-biased B. indicus introgression, where mitonuclear incompatibility exerted selection pressure against B. indicus mitochondria. This study provides a novel perspective on African cattle demography and supports the role of mitonuclear incompatibility in the hybridization of mammalian species.


Assuntos
Cromossomos , Hibridização Genética , Alelos , Animais , Teorema de Bayes , Bovinos/genética , Genótipo , Masculino , Mamíferos
7.
Methods Microbiol ; 50: 233-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38013929

RESUMO

SARS-CoV-2 continues to evolve, even after implementation of public-wide vaccination, as can be observed by an increasing number of mutations over time. Compared to responses by the United States and European countries, the disease mitigation strategies employed by the Australian government have been swift and effective. This provides a unique opportunity to study the emergence of variants of concern (VOCs) at many latitude levels in a country that has been able to control infection for the majority of the pandemic. In the present study, we explored the occurrence and accumulation of major mutations typical of VOCs in different regions of Australia and the effects that latitude has on the establishment of VOC-induced disease. We also studied the constellation of mutations characteristic of VOCs to determine if the mutation sets acted as haplotypes. Our goal was to explore processes behind the emergence of VOCs as the viral disease progresses towards becoming endemic. Most reported COVID-19 cases were in largest cities located within a -30°S to - 50°S latitude corridor previously identified to be associated with seasonal behavior. Accumulation plots of individual amino acid variants of major VOCs showed that the first major haplotypes reported worldwide were also present in Australia. A classification of accumulation plots revealed the existence of 18 additional haplotypes associated with VOCs alpha, delta and omicron. Core mutant constellations for these VOCs and curve overlaps for variants in each set of haplotypes demonstrated significant decoupling patterns, suggesting processes of emergence. Finally, construction of a "haplotype network" that describes the viral population landscape of Australia throughout the COVID-19 pandemic revealed significant and unanticipated seasonal patterns of emergence and diversification. These results provide a unique window into our evolutionary understanding of a human pathogen of great significance. They may guide future research into mitigation and prediction strategies for future VOCs.

8.
Integr Comp Biol ; 61(6): 2053-2065, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34387347

RESUMO

The almost limitless complexity of biology has led to two general approaches to understanding biological phenomena. One approach is dominated by reductionism in which high-level phenomena of whole systems are viewed as emerging from relatively simple and generally understood interactions at a substantially lower level. Although this approach is theoretically general, it can become intractable in practice when attempting to simultaneously explain a wide range of systems. A second approach is for specialists to investigate biological phenomena within one of many different hierarchical levels of description that are separated to decouple from concerns at other levels. Although this approach reduces the explanatory burden on specialists that operate within each level, it also reduces integration from insights gained at other levels. Thus, as beneficial as these approaches have been, they limit the scope and integration of knowledge across scales of biological organization to the detriment of a truly synoptic view of life. The challenge is to find a theoretical and experimental framework that facilitates a broader understanding of the hierarchy of life-providing permeability for the exchange of ideas among disciplinary specialists without discounting the peculiarities that have come to define those disciplines. For this purpose, coarse-grained, scale-invariant properties, and resources need to be identified that describe the characteristic features of a living system at all spatiotemporal scales. The approach will be aided by a common vernacular that underscores the realities of biological connections across a wide range of scales. Therefore, in this vision paper, we propose a conceptual approach based on four identified resources-energy, conductance, storage, and information (ECSI)-to reintegrate biological studies with the aim of unifying life sciences under resource limitations. We argue that no functional description of a living system is complete without accounting for at least all four of these resources. Thus, making these resources explicit will help to identify commonalities to aid in transdisciplinary discourse as well as opportunities for integrating among the differently scoped areas of specialized inquiry. The proposed conceptual framework for living systems should be valid across all scales and may uncover potential limitations of existing hypotheses and help researchers develop new hypotheses addressing fundamental processes of life without having to resort to reductionism.


Assuntos
Estágios do Ciclo de Vida , Animais , Humanos
9.
Methods Microbiol ; 50: 27-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38620818

RESUMO

Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.

10.
Evol Bioinform Online ; 15: 1176934319872980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523127

RESUMO

Networks describe how parts associate with each other to form integrated systems which often have modular and hierarchical structure. In biology, network growth involves two processes, one that unifies and the other that diversifies. Here, we propose a biphasic (bow-tie) theory of module emergence. In the first phase, parts are at first weakly linked and associate variously. As they diversify, they compete with each other and are often selected for performance. The emerging interactions constrain their structure and associations. This causes parts to self-organize into modules with tight linkage. In the second phase, variants of the modules diversify and become new parts for a new generative cycle of higher level organization. The paradigm predicts the rise of hierarchical modularity in evolving networks at different timescales and complexity levels. Remarkably, phylogenomic analyses uncover this emergence in the rewiring of metabolomic and transcriptome-informed metabolic networks, the nanosecond dynamics of proteins, and evolving networks of metabolism, elementary functionomes, and protein domain organization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA