Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Commun ; 15(1): 4405, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782923

RESUMO

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.


Assuntos
Células Endoteliais , Proteína 1 de Ligação a Y-Box , Proteína da Zônula de Oclusão-1 , Animais , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Camundongos , Humanos , Células Endoteliais/metabolismo , Grânulos de Estresse/metabolismo , Neovascularização Fisiológica , Vasos Retinianos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Angiogênese , Fatores de Transcrição
2.
Nat Med ; 30(2): 443-454, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321220

RESUMO

Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Animais , Camundongos , Humanos , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Retinopatia Diabética/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Células Endoteliais , Senoterapia , Senescência Celular
3.
Cell Commun Signal ; 21(1): 196, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940970

RESUMO

The GPCR HCAR1 is known to be the sole receptor for lactate, which modulates its metabolic effects. Despite its significant role in many processes, mice deficient in HCAR1 exhibit no visible phenotype and are healthy and fertile. We performed transcriptomic analysis on HCAR1 deficient cells, in combination with lactate, to explore pathophysiologically altered processes. Processes such as immune regulation, various cancers, and neurodegenerative diseases were significantly enriched for HCAR1 transcriptomic signature. However, the most affected process of all was autism spectrum disorder. We performed behavioral tests on HCAR1 KO mice and observed that these mice manifest autistic-like behavior. Our data opens new avenues for research on HCAR1 and lactate effect at a pathological level. Video Abstract.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Ácido Láctico/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo
4.
Blood ; 141(3): 271-284, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36351237

RESUMO

Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.


Assuntos
Sobrecarga de Ferro , Ferro , Camundongos , Animais , Ferro/metabolismo , Transferrina/metabolismo , Células Endoteliais/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Fator 2 Relacionado a NF-E2 , Hepatócitos/metabolismo , Fígado/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , RNA Mensageiro/metabolismo
5.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35167498

RESUMO

Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). VLDL receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids. Since fatty acid uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We found that excess circulating lipids restrained retinal autophagy, which contributed to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived fatty acid sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.


Assuntos
Degeneração Macular , Neovascularização Retiniana , Animais , Autofagia , Proliferação de Células , Ácidos Graxos , Degeneração Macular/patologia , Camundongos , Neovascularização Patológica , Receptores Acoplados a Proteínas G , Neovascularização Retiniana/patologia , Triglicerídeos
6.
Stem Cell Reports ; 17(3): 584-598, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35120625

RESUMO

Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs) have shown great potential as an alternative to primary human hepatocytes (PHHs) for in vitro modeling. Several differentiation protocols have been described to direct PSCs toward the hepatic fate. Here, by leveraging recent knowledge of the signaling pathways involved in liver development, we describe a robust, scalable protocol that allowed us to consistently generate high-quality bipotent human hepatoblasts and HLCs from both embryonic stem cells and induced PSC (iPSCs). Although not yet fully mature, such HLCs were more similar to adult PHHs than were cells obtained with previously described protocols, showing good potential as a physiologically representative alternative to PHHs for in vitro modeling. PSC-derived hepatoblasts effectively generated with this protocol could differentiate into mature hepatocytes and cholangiocytes within syngeneic liver organoids, thus opening the way for representative human 3D in vitro modeling of liver development and pathophysiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Adulto , Diferenciação Celular , Células-Tronco Embrionárias , Hepatócitos , Humanos , Transdução de Sinais
7.
Hypertension ; 79(3): 575-587, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961326

RESUMO

BACKGROUND: Individuals born preterm present left ventricle changes and increased risk of cardiac diseases and heart failure. The pathophysiology of heart disease after preterm birth is incompletely understood. Mitochondria dysfunction is a hallmark of cardiomyopathy resulting in heart failure. We hypothesized that neonatal hyperoxia in rats, a recognized model simulating preterm birth conditions and resulting in oxygen-induced cardiomyopathy, induce left ventricle mitochondrial changes in juvenile rats. We also hypothesized that humanin, a mitochondrial-derived peptide, would be reduced in young adults born preterm. METHODS: Sprague-Dawley pups were exposed to room air (controls) or 80% O2 at postnatal days 3 to 10 (oxygen-induced cardiomyopathy). We studied left ventricle mitochondrial changes in 4 weeks old males. In a cohort of young adults born preterm (n=55) and age-matched term (n=54), we compared circulating levels of humanin. RESULTS: Compared with controls, oxygen-exposed rats showed smaller left ventricle mitochondria with disrupted integrity on electron microscopy, decreased oxidative phosphorylation, increased glycolysis markers, and reduced mitochondrial biogenesis and abundance. In oxygen-exposed rats, we observed lipid deposits, increased superoxide production (isolated cardiomyocytes), and reduced Nrf2 gene expression. In the cohort, left ventricle ejection fraction and peak global longitudinal strain were similar between groups however humanin levels were lower in preterm and associated with left ventricle ejection fraction and peak global longitudinal strain. CONCLUSIONS: In conclusion, neonatal hyperoxia impaired left ventricle mitochondrial structure and function in juvenile animals. Serum humanin level was reduced in preterm adults. This study suggests that preterm birth-related conditions entail left ventricle mitochondrial alterations that may underlie cardiac changes perpetuated into adulthood. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03261609.


Assuntos
Cardiomiopatias/etiologia , Hiperóxia/complicações , Mitocôndrias/metabolismo , Nascimento Prematuro , Disfunção Ventricular Esquerda/etiologia , Adolescente , Adulto , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Feminino , Humanos , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Masculino , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Adulto Jovem
8.
Cell Mol Life Sci ; 79(1): 37, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971428

RESUMO

The roles of nitric oxide (NO) and endothelial NO synthase (eNOS) in the regulation of angiogenesis are well documented. However, the involvement of eNOS in the sprouting of endothelial tip-cells at the vascular front during sprouting angiogenesis remains poorly defined. In this study, we show that downregulation of eNOS markedly inhibits VEGF-stimulated migration of endothelial cells but increases their polarization, as evidenced by the reorientation of the Golgi in migrating monolayers and by the fewer filopodia on tip cells at ends of sprouts in endothelial cell spheroids. The effect of eNOS inhibition on EC polarization was prevented in Par3-depleted cells. Importantly, downregulation of eNOS increased the expression of polarity genes, such as PARD3B, PARD6A, PARD6B, PKCΖ, TJP3, and CRB1 in endothelial cells. In retinas of eNOS knockout mice, vascular development is retarded with decreased vessel density and vascular branching. Furthermore, tip cells at the extremities of the vascular front have a marked reduction in the number of filopodia per cell and are more oriented. In a model of oxygen-induced retinopathy (OIR), eNOS deficient mice are protected during the initial vaso-obliterative phase, have reduced pathological neovascularization, and retinal endothelial tip cells have fewer filopodia. Single-cell RNA sequencing of endothelial cells from OIR retinas revealed enrichment of genes related to cell polarity in the endothelial tip-cell subtype of eNOS deficient mice. These results indicate that inhibition of eNOS alters the polarity program of endothelial cells, which increases cell polarization, regulates sprouting angiogenesis and normalizes pathological neovascularization during retinopathy.


Assuntos
Neovascularização Patológica , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/fisiologia , Retina/metabolismo , Neovascularização Retiniana , Vasos Retinianos , Animais , Bovinos , Linhagem Celular , Movimento Celular , Polaridade Celular , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/citologia , Retina/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/citologia , Vasos Retinianos/patologia
9.
Cells ; 10(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34440682

RESUMO

The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).


Assuntos
Cininas/metabolismo , Degeneração Macular/patologia , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Retina/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Humanos , Sistema Calicreína-Cinina , Degeneração Macular/metabolismo , Neovascularização Patológica , Sistema Renina-Angiotensina , Retina/patologia
10.
Dev Cell ; 56(15): 2237-2251.e6, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273276

RESUMO

Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGF-ß signaling, and they begin to acquire blood-retina barrier properties. Endothelial deletion of TGF-ß receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation and hemorrhagic vascular malformations. Oxygen-induced retinopathy vasculature exhibits S-like tip cells, and Alk5 deletion impedes retina revascularization. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that non-canonical-TGF-ß signaling could improve retinal revascularization and neural function in ischemic retinopathy.


Assuntos
Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Retina/fisiologia , Neovascularização Retiniana/metabolismo , Animais , Células Endoteliais/metabolismo , Endotélio Vascular , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Retina/citologia , Retina/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
11.
iScience ; 24(4): 102376, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33937726

RESUMO

The group of retinal degenerations, retinitis pigmentosa (RP), comprises more than 150 genetic abnormalities affecting photoreceptors. Finding degenerative pathways common to all genetic abnormalities may allow general treatment such as neuroprotection. Neuroprotection may include enhancing the function of cells that directly support photoreceptors, retinal pigment epithelial cells, and Müller glia. Treatment with fibroblast growth factor 21 (FGF21), a neuroprotectant, from postnatal week 4-10, during rod and cone loss in P23H mice (an RP model) with retinal degeneration, preserved photoreceptor function and normalized Müller glial cell morphology. Single-cell transcriptomics of retinal cells showed that FGF21 receptor Fgfr1 was specifically expressed in Müller glia/astrocytes. Of all retinal cells, FGF21 predominantly affected genes in Müller glia/astrocytes with increased expression of axon development and synapse formation pathway genes. Therefore, enhancing retinal glial axon and synapse formation with neurons may preserve retinal function in RP and may suggest a general therapeutic approach for retinal degenerative diseases.

12.
Cell Metab ; 33(4): 818-832.e7, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548171

RESUMO

Attenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence. Senescent (p16INK4A-expressing) cells accumulate in retinas of patients with diabetic retinopathy and during peak destructive neovascularization in a mouse model of retinopathy. Using either genetic approaches that clear p16INK4A-expressing cells or small molecule inhibitors of the anti-apoptotic protein BCL-xL, we show that senolysis suppresses pathological angiogenesis. Single-cell analysis revealed that subsets of endothelial cells with senescence signatures and expressing Col1a1 are no longer detected in BCL-xL-inhibitor-treated retinas, yielding a retina conducive to physiological vascular repair. These findings provide mechanistic evidence supporting the development of BCL-xL inhibitors as potential treatments for neovascular retinal disease.


Assuntos
Senescência Celular , Doenças Retinianas/patologia , Proteína bcl-X/metabolismo , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Flavonóis/química , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Proteína bcl-X/antagonistas & inibidores
13.
Diabetologia ; 64(1): 70-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099660

RESUMO

AIMS/HYPOTHESIS: Proliferative diabetic retinopathy (PDR) with retinal neovascularisation (NV) is a leading cause of vision loss. This study identified a set of metabolites that were altered in the vitreous humour of PDR patients compared with non-diabetic control participants. We corroborated changes in vitreous metabolites identified in prior studies and identified novel dysregulated metabolites that may lead to treatment strategies for PDR. METHODS: We analysed metabolites in vitreous samples from 43 PDR patients and 21 non-diabetic epiretinal membrane control patients from Japan (age 27-80 years) via ultra-high-performance liquid chromatography-mass spectrometry. We then investigated the association of a novel metabolite (creatine) with retinal NV in mouse oxygen-induced retinopathy (OIR). Creatine or vehicle was administered from postnatal day (P)12 to P16 (during induced NV) via oral gavage. P17 retinas were quantified for NV and vaso-obliteration. RESULTS: We identified 158 metabolites in vitreous samples that were altered in PDR patients vs control participants. We corroborated increases in pyruvate, lactate, proline and allantoin in PDR, which were identified in prior studies. We also found changes in metabolites not previously identified, including creatine. In human vitreous humour, creatine levels were decreased in PDR patients compared with epiretinal membrane control participants (false-discovery rate <0.001). We validated that lower creatine levels were associated with vascular proliferation in mouse retina in the OIR model (p = 0.027) using retinal metabolomics. Oral creatine supplementation reduced NV compared with vehicle (P12 to P16) in OIR (p = 0.0024). CONCLUSIONS/INTERPRETATION: These results suggest that metabolites from vitreous humour may reflect changes in metabolism that can be used to find pathways influencing retinopathy. Creatine supplementation could be useful to suppress NV in PDR. Graphical abstract.


Assuntos
Retinopatia Diabética/metabolismo , Metabolômica , Corpo Vítreo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/análise , Animais , Cromatografia Líquida de Alta Pressão , Creatina/administração & dosagem , Creatina/análise , Retinopatia Diabética/fisiopatologia , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Retiniana/metabolismo , Corpo Vítreo/química
14.
J Neuroinflammation ; 17(1): 359, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246504

RESUMO

BACKGROUND: Inflammation and particularly interleukin-1ß (IL-1ß), a pro-inflammatory cytokine highly secreted by activated immune cells during early AMD pathological events, contribute significantly to retinal neurodegeneration. Here, we identify specific cell types that generate IL-1ß and harbor the IL-1 receptor (IL-1R) and pharmacologically validate IL-1ß's contribution to neuro-retinal degeneration using the IL-1R allosteric modulator composed of the amino acid sequence rytvela (as well as the orthosteric antagonist, Kineret) in a model of blue light-induced retinal degeneration. METHODS: Mice were exposed to blue light for 6 h and sacrificed 3 days later. Mice were intraperitoneally injected with rytvela, Kineret, or vehicle twice daily for 3 days. The inflammatory markers F4/80, NLRP3, caspase-1, and IL-1ß were assessed in the retinas. Single-cell RNA sequencing was used to determine the cell-specific expression patterns of retinal Il1b and Il1r1. Macrophage-induced photoreceptor death was assessed ex vivo using retinal explants co-cultured with LPS-activated bone marrow-derived macrophages. Photoreceptor cell death was evaluated by the TUNEL assay. Retinal function was assessed by flash electroretinography. RESULTS: Blue light markedly increased the mononuclear phagocyte recruitment and levels of inflammatory markers associated with photoreceptor death. Co-localization of NLRP3, caspase-1, and IL-1ß with F4/80+ mononuclear phagocytes was clearly detected in the subretinal space, suggesting that these inflammatory cells are the main source of IL-1ß. Single-cell RNA sequencing confirmed the immune-specific expression of Il1b and notably perivascular macrophages in light-challenged mice, while Il1r1 expression was found primarily in astrocytes, bipolar, and vascular cells. Retinal explants co-cultured with LPS/ATP-activated bone marrow-derived macrophages displayed a high number of TUNEL-positive photoreceptors, which was abrogated by rytvela treatment. IL-1R antagonism significantly mitigated the inflammatory response triggered in vivo by blue light exposure, and rytvela was superior to Kineret in preserving photoreceptor density and retinal function. CONCLUSION: These findings substantiate the importance of IL-1ß in neuro-retinal degeneration and revealed specific sources of Il1b from perivascular MPs, with its receptor Ilr1 being separately expressed on surrounding neuro-vascular and astroglial cells. They also validate the efficacy of rytvela-induced IL-1R modulation in suppressing detrimental inflammatory responses and preserving photoreceptor density and function in these conditions, reinforcing the rationale for clinical translation.


Assuntos
Interleucina-1beta/imunologia , Peptídeos/farmacologia , Células Fotorreceptoras/patologia , Receptores de Interleucina-1/antagonistas & inibidores , Degeneração Retiniana/patologia , Animais , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Células Fotorreceptoras/efeitos dos fármacos , Degeneração Retiniana/imunologia
15.
Science ; 369(6506)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820093

RESUMO

In developed countries, the leading causes of blindness such as diabetic retinopathy are characterized by disorganized vasculature that can become fibrotic. Although many such pathological vessels often naturally regress and spare sight-threatening complications, the underlying mechanisms remain unknown. Here, we used orthogonal approaches in human patients with proliferative diabetic retinopathy and a mouse model of ischemic retinopathies to identify an unconventional role for neutrophils in vascular remodeling during late-stage sterile inflammation. Senescent vasculature released a secretome that attracted neutrophils and triggered the production of neutrophil extracellular traps (NETs). NETs ultimately cleared diseased endothelial cells and remodeled unhealthy vessels. Genetic or pharmacological inhibition of NETosis prevented the regression of senescent vessels and prolonged disease. Thus, clearance of senescent retinal blood vessels leads to reparative vascular remodeling.


Assuntos
Envelhecimento/patologia , Retinopatia Diabética/patologia , Armadilhas Extracelulares/imunologia , Vasos Retinianos/patologia , Animais , Senescência Celular , Retinopatia Diabética/imunologia , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Vasos Retinianos/imunologia
16.
Eur J Med Genet ; 63(2): 103655, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31034989

RESUMO

LGMD1D is an autosomal dominant limb girdle muscular dystrophy caused by variants in the DNAJB6 gene. This is typically an adult-onset disorder characterized by moderately progressive proximal muscle weakness without respiratory or bulbar involvement; however phenotypic variability is often observed with some individuals having earlier onset and more severe symptoms. Here, we present a family with a novel NM_005494.2:c.271T > G p.(Phe91Val) variant in DNAJB6 with a late-onset, mild and slowly progressive form of the disease, including one individual, who in her 7th decade of life has subclinical LGMD1D with only mild features on muscle biopsy and MRI. Unlike previously reported cases where missense variants affecting the Phe91 amino acid residue are associated with a more severe form of the disease, this family represents the mild end of the LGMD1D clinical spectrum. Therefore, this family adds further complexity to the genotype-phenotype correlation in DNAJB6-associated muscular dystrophies.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Debilidade Muscular/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idoso , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Músculo Esquelético/ultraestrutura , Distrofia Muscular do Cíngulo dos Membros/congênito , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Sequenciamento do Exoma
17.
EMBO Mol Med ; 11(10): e10473, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31486227

RESUMO

The light-sensitive photoreceptors in the retina are extremely metabolically demanding and have the highest density of mitochondria of any cell in the body. Both physiological and pathological retinal vascular growth and regression are controlled by photoreceptor energy demands. It is critical to understand the energy demands of photoreceptors and fuel sources supplying them to understand neurovascular diseases. Retinas are very rich in lipids, which are continuously recycled as lipid-rich photoreceptor outer segments are shed and reformed and dietary intake of lipids modulates retinal lipid composition. Lipids (as well as glucose) are fuel substrates for photoreceptor mitochondria. Dyslipidemia contributes to the development and progression of retinal dysfunction in many eye diseases. Here, we review photoreceptor energy demands with a focus on lipid metabolism in retinal neurovascular disorders.


Assuntos
Dislipidemias/complicações , Dislipidemias/patologia , Doenças Metabólicas/complicações , Doenças Metabólicas/patologia , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Animais , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos , Células Fotorreceptoras/fisiologia
18.
PLoS One ; 14(6): e0218282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188886

RESUMO

BACKGROUND: Ischemic retinopathies (IRs) are leading causes of visual impairment. They are characterized by an initial phase of microvascular degeneration and a second phase of aberrant pre-retinal neovascularization (NV). microRNAs (miRNAs) regulate gene expression, and a number play a role in normal and pathological NV. But, post-transcriptional modulation of miRNAs in the eye during the development of IRs has not been systematically evaluated. AIMS & METHODS: Using Next Generation Sequencing (NGS) we profiled miRNA expression in the retina and choroid during vasodegenerative and NV phases of oxygen-induced retinopathy (OIR). RESULTS: Approximately 20% of total miRNAs exhibited altered expression (up- or down-regulation); 6% of miRNA were found highly expressed in retina and choroid of rats subjected to OIR. During OIR-induced vessel degeneration phase, miR-199a-3p, -199a-5p, -1b, -126a-3p displayed a robust decreased expression (> 85%) in the retina. While in the choroid, miR-152-3p, -142-3p, -148a-3p, -532-3p were upregulated (>200%) and miR-96-5p, -124-3p, -9a-3p, -190b-5p, -181a-1-3p, -9a-5p, -183-5p were downregulated (>70%) compared to controls. During peak pathological NV, miR-30a-5p, -30e-5p and 190b-5p were markedly reduced (>70%), and miR-30e-3p, miR-335, -30b-5p strongly augmented (by up to 300%) in the retina. Whereas in choroid, miR-let-7f-5p, miR-126a-5p and miR-101a-3p were downregulated by (>81%), and miR-125a-5p, let-7e-5p and let-7g-5p were upregulated by (>570%) during NV. Changes in miRNA observed using NGS were validated using qRT-PCR for the 24 most modulated miRNAs. In silico approach to predict miRNA target genes (using algorithms of miRSystem database) identified potential new target genes with pro-inflammatory, apoptotic and angiogenic properties. CONCLUSION: The present study is the first comprehensive description of retinal/choroidal miRNAs profiling in OIR (using NGS technology). Our results provide a valuable framework for the characterization and possible therapeutic potential of specific miRNAs involved in ocular IR-triggered inflammation, angiogenesis and degeneration.


Assuntos
Anormalidades do Olho/genética , Proteínas do Olho/genética , Isquemia/genética , MicroRNAs/genética , Oxigênio/toxicidade , Neovascularização Retiniana/genética , Vasos Retinianos/anormalidades , Retinite/genética , Malformações Vasculares/genética , Animais , Animais Recém-Nascidos , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Anormalidades do Olho/induzido quimicamente , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isquemia/metabolismo , Isquemia/patologia , MicroRNAs/classificação , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/induzido quimicamente , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Retinite/induzido quimicamente , Retinite/metabolismo , Retinite/patologia , Transdução de Sinais , Malformações Vasculares/induzido quimicamente , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia
19.
Nat Commun ; 10(1): 1262, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890717

RESUMO

Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice.


Assuntos
Neoplasias Encefálicas/genética , Cromatina/metabolismo , Glioblastoma/genética , Histonas/genética , Complexo Repressor Polycomb 2/metabolismo , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Feminino , Edição de Genes/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Células HEK293 , Código das Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Masculino , Metionina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Neurogênese/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Proc Natl Acad Sci U S A ; 116(10): 4538-4547, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787185

RESUMO

Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from ß-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.


Assuntos
Permeabilidade Capilar , Retinopatia Diabética/patologia , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Ativação Enzimática , Hiperglicemia/metabolismo , Proteína Jagged-1/biossíntese , Camundongos , Óxido Nítrico/biossíntese , Vasos Retinianos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA