RESUMO
Osteoporosis is characterized by decreased bone mass, microarchitectural deterioration, and increased bone fragility. High-fat diet (HFD)-induced obesity also results in bone loss, which is associated with an imbalanced gut microbiome. However, whether HFD-induced obesity or HFD itself promotes osteoclastogenesis and consequent bone loss remains unclear. In this study, we developed HFD-induced obesity (HIO) and non-obesity (NO) mouse models to evaluate the effect of HFD on bone loss. NO mice were defined as body weight within 5% of higher or lower than that of chow diet fed mice after 10 weeks HFD feeding. NO was protected from HIO-induced bone loss by the RANKL /OPG system, with associated increases in the tibia tenacity, cortical bone mean density, bone volume of cancellous bone, and trabecular number. This led to increased bone strength and improved bone microstructure via the microbiome-short-chain fatty acids (SCFAs) regulation. Additionally, endogenous gut-SCFAs produced by the NO mice activated free fatty acid receptor 2 and inhibited histone deacetylases, resulting in the promotion of Treg cell proliferation in the HFD-fed NO mice; thereby, inhibiting osteoclastogenesis, which can be transplanted by fecal microbiome. Furthermore, T cells from NO mice retain differentiation of osteoclast precursors of RAW 264.7 macrophages ex vivo. Our data reveal that HFD is not a deleterious diet; however, the induction of obesity serves as a key trigger of bone loss that can be blocked by a NO mouse-specific gut microbiome.
RESUMO
BACKGROUND/AIMS: Recently, effective and purified ingredients of traditional Chinese medicine (TCM) were extracted to play crucial roles in the treatment of pulmonary diseases. Our previous research focused on TCM drug screening aimed at abnormal airway muscle contraction during respiratory diseases. Coptisine, an effective ingredient extracted from bitter herbs has shown a series of antioxidant, antibacterial, cardioprotective and neuroprotective pharmacological properties. In the current study, we questioned whether coptisine could also participate in asthma treatment through relaxing abnormal contracted mouse airway smooth muscle (ASM). The present study aimed to characterize the relaxant effects of coptisine on mouse ASM and uncover the underlying molecular mechanisms. METHODS: To investigate the role of coptisine on pre-contracted mouse ASM, a series of biological techniques, including force measurement and patch-clamp experiments were employed. RESULTS: Coptisine was found to inhibit high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a dose-dependent manner. Further research demonstrated that the coptisine-induced mouse ASM relaxation was mediated by alteration of calcium mobilization via voltage-dependent L-type Ca2+ channels (VDLCCs) and non-selective cation channels (NSCCs). CONCLUSION: Our data showed that mouse ASM could be relaxed by coptisine via altering the intracellular Ca2+ concentration through blocking VDLCCs and NSCCs, which suggested that this pharmacological active constituent might be classified as a potential new drug for the treatment of abnormal airway muscle contraction.
Assuntos
Berberina/análogos & derivados , Broncodilatadores/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Traqueia/efeitos dos fármacos , Animais , Berberina/farmacologia , Canais de Cálcio Tipo L/metabolismo , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Traqueia/metabolismoRESUMO
Diclofenac sodium (DCF) is a nonsteroidal anti-inflammatory drug (NSAID) and is widely used as an analgesic and anti-inflammatory agent. Herein, we found that DCF could relax high K+ (80 mM K+)-/ACh-precontracted tracheal rings (TRs) in mice. This study aimed to elucidate the underlying mechanisms of DCF-induced relaxations. The effects of DCF on airway smooth muscle (ASM) cells were explored using multiple biophysiological techniques, such as isometric tension measurement and patch-clamping experiments. Both high K+- and ACh-evoked contraction of TRs in mice were relaxed by DCF in a dose-dependent manner. The results of isometric tension and patch-clamping experiments demonstrated that DCF-induced relaxation in ASM cells was mediated by cytosolic free Ca2+, which was decreased via inhibition of voltage-dependent L-type Ca2+ channels (VDLCCs), nonselective cation channels (NSCCs), and Na+/Ca2+ exchange. Meanwhile, DCF also enhanced large conductance Ca2+ activated K+ (BK) channels, which led to the relaxation of ASMs. Our data demonstrated that DCF relaxed ASMs by decreasing the intracellular Ca2+ concentration via inhibition of Ca2+ influx and Na+/Ca2+ exchange. Meanwhile, the enhanced BK channels also played a role in DCF-induced relaxation in ASMs. These results suggest that DCF is a potential candidate for antibronchospasmic drugs used in treating respiratory diseases such as asthma and chronic obstructive pulmonary disease.
RESUMO
AIMS: Benidipine is a dihydropyridine (DHP) derived Ca2+ antagonist, can block triple Ca2+ channels (L, N, and T). It has been used as a safety anti-hypertensive drug because of its long-acting relaxant effect on vascular smooth muscle (VSM). However, whether benidipine has similar pharmacological actions in airway smooth muscle (ASM) is unknown. This research aims to reveal the relaxant property and Ca2+ antagonistic effect of benidipine on ASM. MAIN METHODS: The relaxant property of mouse ASM was investigated by tissue tension tests, and Ca2+ antagonistic effect was evaluated through patch-clamp techniques. KEY FINDINGS: Benidipine caused dose-dependent relaxations on high K+ (80â¯mM) induced precontraction in mouse ASM, which relied on inhibition of extracellular Ca2+ influx, and 1⯵M benidipine totally blocked L-type voltage-dependent Ca2+ channels (LVDCCs) currents in airway smooth muscle cells (ASMCs). Benidipine also showed dose-dependent inhibition of ACh-induced precontraction with or without the LVDCCs blocker nifedipine, and 100⯵M benidipine blocked ACh-stimulated Ca2+ influx through not only LVDCCs but also non-selective cation channels (NSCCs). SIGNIFICANCE: Benidipine blocked LVDCCs and NSCCs to abolish these channels-mediated Ca2+ influx, which relaxed precontracted ASM. This study represented benidipine with a new potential medicinal value for ASM hypercontractility.
Assuntos
Di-Hidropiridinas/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Di-Hidropiridinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Sistema Respiratório/efeitos dos fármacosRESUMO
Calcium signalling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and acrosome reactions are all mediated by increases in intracellular Ca2+. Our previous reports have shown that deficiency of MTMR14, a novel phosphoinositide phosphatase, induces a muscle disorder by disrupting Ca2+ homeostasis. Recently, we found that MTMR14 is also expressed in the testes; however, whether deficiency of MTMR14 in the testes also alters the Ca2+ concentration and impairs male fertility remains entirely unknown. In the present study, we found that MTMR14 is also expressed in the testes and mature sperm cells, suggesting that deficiency of MTMR14 might have some effect on male fertility. Both in vivo fertility and in vitro fertilization tests were then performed, and we found that MTMR14-/- male mice showed decreased fertility. A series of experiments were then arranged to test the testis and sperm parameters; we found that MTMR14 deficiency caused small size of the testes, small numbers of both total and immotile sperm, expanded membrane of sperm tail, a decreased proportion of acrosome reaction, and in contrast, an increased proportion of abnormal sperm and augmented apoptosis, etc. Further study also found that the muscle force of the vas deferens decreased significantly in KO mice. Intracellular calcium homeostasis in the testes and epididymis was impaired by MTMR14 deletion; moreover, the relative mRNA expression levels of Itpr1, Itpr2, and Ryr3 were dramatically decreased in MTMR14 KO mice. Thus, MTMR14 deletion impairs male fertility by causing decreased muscle force of the vas deferens and intracellular calcium imbalance.
Assuntos
Sinalização do Cálcio/genética , Fertilidade/genética , Monoéster Fosfórico Hidrolases/genética , Espermatozoides/metabolismo , Reação Acrossômica/genética , Animais , Epididimo/crescimento & desenvolvimento , Epididimo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Knockout , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Capacitação Espermática/genética , Espermatozoides/patologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismoRESUMO
HLA-B*58:01 has been demonstrated to be associated with allopurinol-induced severe cutaneous adverse reactions. Since HLA-B*58:01 is too complicated to be identified, it is necessary to select an appropriate surrogate biomarker. In Japan, the rs9263726 allele was considered as a surrogate biomarker for HLA-B*58:01, but this was not the case with the Australian cohort. Due to the conflict results, in this study, we aim to demonstrate whether the rs9263726 allele is a surrogate biomarker for HLA-B*58:01 in Han Chinese population. A total of 353 samples (200 cases from the south and 153 cases from the north) were selected to detect HLA-B*58:01 and rs9263726 allele. The HLA-B*58:01 was identified by sequencing-based method, and the rs9263726 allele was identified by Taqman SNP Genotyping Assays. The results showed that the two alleles had a linkage, but not absolute linkage disequilibrium in Han Chinese population.
Assuntos
Alelos , Etnicidade/genética , Antígenos HLA-B/genética , Desequilíbrio de Ligação , China , Genótipo , HumanosRESUMO
Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.
RESUMO
BACKGROUND/AIMS: Recently, some small-molecule compounds that were designed for cancer therapy have acquired new roles in the treatment of pulmonary diseases. However, drug screening aimed at abnormal muscle contraction is still limited. TSU-68 is a potent, orally administered, small-molecule agent that can reduce the vascular endothelial growth factor (VEGF)-induced Ca2+ increase in endothelial cells. We questioned whether TSU-68 could also affect calcium influx and relax airway smooth muscle (ASM) cells. The current study aimed to investigate these effects and to explore the underlying mechanisms. METHODS: The effects of TSU-68 on ASM cells were studied in mice using a series of biophysiological techniques, including force measurement and patch-clamp experiments. RESULTS: TSU-68 inhibited high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a concentration-dependent manner. Further research demonstrated that the TSU-68-induced ASM relaxation was mediated by calcium, which was decreased by blocking voltage-dependent Ca2+ channels (VDCCs) and non-selective cation channels (NSCCs). CONCLUSION: Our data indicated that TSU-68 relaxes tense ASM by reducing the intracellular Ca2+ concentration through blocking VDCCs and NSCCs, which suggested that this small molecule might be useful in the treatment of abnormal smooth muscle.
Assuntos
Indóis/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Propionatos/farmacologia , Acetilcolina/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Oxindóis , Técnicas de Patch-Clamp , Potássio/farmacologia , PirróisRESUMO
PURPOSE: Gastric cancer studies indicated a potential correlation between circulating tumor cells (CTCs) in peripheral blood and tumor relapse/metastasis. The prevalence and significance of circulating tumor microemboli (CTM) in gastric cancer remain unknown. We investigated the prevalence and prognostic value of CTCs and CTM for progression-free survival (PFS) and overall survival (OS) in gastric cancer patients. METHODS: Eighty-one gastric cancer patients consented to provide 5ml of peripheral blood before systematic therapy. CTCs and CTM were isolated using isolation by size of epithelial tumor cells and characterized by cytopathologists. For 41 stage IV gastric cancer patients, CTM was investigated as a potential biomarker to predict prognosis. RESULTS: CTCs were detected in 51 patients; the average count was 1.81. In clinical stage I, II, III, and IV patients, the average CTC counts were 1.40, 0.67, 1.24, and 2.71, respectively. CTM were detected in 3 of 33 clinical stage I to IIIb patients, at an average of 0.12 (0-2). CTM were detected in 13 of 53 clinical stage IIIc to IV patients, at an average of 1.26 (0-22). In stage IV patients, CTM positivity correlated with the CA125 level. PFS and OS in CTM-positive patients were significantly lower than in CTM-negative patients (P<.001). CTM positivity was an independent factor for determining the PFS (P=.016) and OS (P=.003) of stage IV patients in multivariate analysis. Using markers of the epithelial-mesenchymal transition, single CTCs were divided into three phenotypes including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. For CTM, CK-/Vimentin+/CD45- and CK+/Vimentin+/CD45- phenotypes were observed, but the CK+/Vimentin-/CD45- CTM phenotype was not. CA125 was detected in gastric cancer cell lines BGC823 and MGC803. CONCLUSIONS: In stage IV patients, CTM positivity was correlated with serum CA125 level. CTM were an independent predictor of shorter PFS and OS in stage IV patients. Thus, CTM detection may be a useful tool to predict prognosis in stage IV patients.
RESUMO
BACKGROUND: Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. METHODS: Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. RESULTS: It was found that AELL inhibited the high K+ or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca2+ channels (VDCC) and non-selective cation channels (NSCC). CONCLUSION: AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma.
Assuntos
Alcaloides/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Nelumbo/química , Extratos Vegetais/farmacologia , Acetilcolina/metabolismo , Animais , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/fisiologia , Folhas de Planta/química , Traqueia/efeitos dos fármacos , Traqueia/fisiologiaRESUMO
INTRODUCTION: Circulating tumor cells (CTCs) play a crucial role in cancer metastasis. In this study, we introduced a novel isolation method by size of epithelial tumor cells (ISET) device with automatic isolation and staining procedure, named one-stop ISET (osISET) and validated its feasibility to capture CTCs from cancer patients. Moreover, we aim to investigate the correlation between clinicopathologic features and CTCs in colorectal cancer (CRC) in order to explore its clinical application. RESULTS: The capture efficiency ranged from 80.3% to 88% with tumor cells spiked into medium while 67% to 78.3% with tumor cells spiked into healthy donors' blood. In detection blood samples of 72 CRC patients, CTCs and clusters of circulating tumor cells (CTC-clusters) were detected with a positive rate of 52.8% (38/72) and 18.1% (13/72) respectively. Moreover, CTC positive rate was associated with factors of lymphatic or venous invasion, tumor depth, lymph node metastasis and TNM stage in CRC patients (p < 0.01). Lymphocyte count and neutrophil to lymphocyte ratio (NLR) were significantly different between CTC positive and negative groups (p < 0.01). MATERIALS AND METHODS: The capture efficiency of the device was tested by spiking cancer cells (MCF-7, A549, SW480, Hela) into medium or blood samples of healthy donors. Blood samples of 72 CRC patients were detected by osISET device. The clinicopathologic characteristics of 72 CRC patients were collected and the association with CTC positive rate or CTC count were analyzed. CONCLUSIONS: Our osISET device was feasible to capture and identify CTCs and CTC-clusters from cancer patients. In addition, our device holds a potential for application in cancer management.
Assuntos
Detecção Precoce de Câncer/instrumentação , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/instrumentação , Separação Celular/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Sensibilidade e Especificidade , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodosRESUMO
BACKGROUND: Myotubularin-related protein 14 (MTMR14) is a novel phosphoinositide phosphatase with roles in the maintenance of normal muscle performance, autophagy, and aging in mice. Our initial pilot study demonstrated that MTMR14 knock out (KO) mice gain weight earlier than their wild-type (WT) littermates, which suggests that this gene may also be involved in metabolism regulation. RESULTS: The present study evaluated the role of MTMR14 in the development of aging-associated obesity. We found that aged MTMR14 KO mice fed a normal chow diet exhibited increased serum triglyceride, total cholesterol, and glucose levels compared to age-matched WT controls. Lipid accumulation was also increased in aged KO mice. Several inflammatory cytokines and adipokines were dramatically dysregulated in the metabolic tissues of aged MTMR14 KO mice compared to control mice. Circulating inflammatory cytokines were significantly elevated and plasma adipokine levels were abnormally regulated in aged MTMR14 KO mice. These data suggest that MTMR14 deficiency caused a late-onset inflammation and metabolic dysfunction. Further study demonstrated that this exacerbated metabolic dysfunction and inflammation may be regulated by the phosphoinositide 3 kinase/protein kinase B and extracellular signal-regulated protein kinase signaling pathways. CONCLUSIONS: Our current research suggests that MTMR14 deletion induces overweight and adult obesity accompanied by chronic inflammation in an age-dependent manner.
RESUMO
Early detection of epidermal growth factor receptor (EGFR) mutation, particularly EGFR T790M mutation, is of clinical significance. The aim of the present study was to compare the performances of amplification refractory mutation system-based quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital polymerase chain reaction (ddPCR) approaches in the detection of EGFR mutation and explore the feasibility of using ddPCR in the detection of samples with low mutation rates. EGFR gene mutations in plasmid samples with different T790M mutation rates (0.1-5%) and 10 clinical samples were detected using the ARMS-qPCR and ddPCR approaches. The results demonstrated that the ARMS-qPCR method stably detected the plasmid samples (6,000 copies) with 5 and 1% mutation rates, while the ddPCR approach reliably detected those with 5% (398 copies), 1% (57 copies), 0.5% (24 copies) and 0.1% (average 6 copies) mutation rates. For the 10 clinical samples, the results for nine samples by the ARMS-qPCR and ddPCR methods were consistent; however, the sample N006, indicated to be EGFR wild-type by ARMS-qPCR, was revealed to have a clear EGFR T790M mutation with seven copies of mutant alleles in a background of 6,000 wild-type copies using ddPCR technology. This study demonstrates the feasibility of applying the ddPCR system to detect EGFR mutation and identified the advantage of ddPCR in the detection of samples with a low EGFR mutation abundance, particularly the secondary EGFR T790M resistance mutation, which enables early diagnosis before acquired resistance to tyrosine kinase inhibitors becomes clinically detectable.
RESUMO
Apoptosis is a regulated cellular suicide program that is critical for the development and maintenance of healthy tissues. Previous studies have shown that small kinetochore associated protein (SKAP) cooperates with kinetochore and mitotic spindle proteins to regulate mitosis. However, the role of SKAP in apoptosis has not been investigated. We have identified a new interaction involving SKAP, and we propose a mechanism through which SKAP regulates cell apoptosis. Our experiments demonstrate that both overexpression and knockdown of SKAP sensitize cells to UV-induced apoptosis. Further study has revealed that SKAP interacts with Pre-mRNA processing Factor 19 (Prp19). We find that UV-induced apoptosis can be inhibited by ectopic expression of Prp19, whereas silencing Prp19 has the opposite effect. Additionally, SKAP negatively regulates the protein levels of Prp19, whereas Prp19 does not alter SKAP expression. Finally, rescue experiments demonstrate that the pro-apoptotic role of SKAP is executed through Prp19. Taken together, these findings suggest that SKAP promotes UV-induced cell apoptosis by negatively regulating the anti-apoptotic protein Prp19.
Assuntos
Apoptose/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Raios Ultravioleta , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Linhagem Celular , Cromatografia de Afinidade , Sequência Conservada , Enzimas Reparadoras do DNA/metabolismo , Evolução Molecular , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos da radiação , Humanos , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/química , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos da radiação , Fatores de Processamento de RNARESUMO
RNA binding proteins are characterized as a new family of apoptosis inducers; however, the mechanism by which they induce apoptosis is poorly understood. KHDC1 family members were recently identified as K-homology (KH)-domain containing RNA binding proteins that are unique to eutherian mammals and highly expressed in oocytes. In this study, we report that the expression of KHDC1A induces caspase-3 dependent apoptosis and inhibits mRNA translation, and the translational repression is independent of apoptosis. We demonstrate that both the N-terminus and C-terminus of KHDC1A are required for its pro-apoptotic and translational repression activities. Furthermore, in the C-terminus of KHDC1A, a putative trans-membrane motif (TMM) is critical for these activities. In addition, the ectopically expressed KHDC1A is localized to the endoplasmic reticulum (ER) and changes the morphology of the ER. The inhibition of ER-specific caspase-12 successfully rescues KHDC1A-induced apoptosis, but not Fas-induced apoptosis. Taken together, we conclude that KHDC1A functions as a global translational repressor and induces apoptosis through an ER-dependent signaling pathway.
Assuntos
Apoptose , Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Animais , Membrana Celular/metabolismo , Células HeLa , Humanos , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genéticaRESUMO
mRNAs required for meiotic maturation and early embryonic development are stored in growing oocytes. These transcripts are translationally repressed until hormonal cues trigger ovulation. Errors in translation underlie some cases of human infertility and are associated with ovarian germ cell tumors. However, it remains unclear how maternal transcripts are kept quiescent in mammals. This study describes a potential translational regulator, KHDC1B. KHDC1B is a member of a small family of KH-domain containing proteins specific to eutherian mammals. Two family members, KHDC1A and 1B, are highly expressed in oocytes. KHDC1A and 1B bind polyU agarose and form oligomers like other KH-domain proteins. The functions of these proteins were tested by expression in Xenopus embryos. KHDC1A caused cell death, whereas KHDC1B caused cleavage arrest. This arrest phenotype was rescued by coexpression of the mouse translational regulator cytoplasmic polyadenylation binding protein 1 (mCPEB1). Coimmunoprecipitation and coimmunostaining experiments confirmed the functional interaction between KHDC1B and mCPEB1. Finally, KHDC1B levels and binding partners were shown to fluctuate with the cell cycle. KHDC1B, via its interaction with mCEPB1, may regulate translation of mRNA targets required for oocyte maturation.
Assuntos
Embrião de Mamíferos/fisiologia , Oócitos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Linhagem Celular , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Oócitos/citologia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Xenopus laevisRESUMO
HSD-3.8 cDNA (accession number AF311312) encodes a human sperm component. A 0.7 kb fragment (HSD-0.7) containing three immunological epitopes of HSD-3.8 cDNA was prepared and expressed in E. coli. Immunization of female rats with the recombinant HSD-0.7 proteins induced infertility. A cDNA fragment encoding the C-terminal 144 amino acids of human G-protein beta l subunit (Gbeta1-C144) was screened by yeast two-hybrid, when HSD-0.7 segment was used as a bait. Recombinant His6-tagged-Gbeta1-C144 protein was expressed in E. coli BL21 and Anti-Gbeta1 serum was raised with purified Gbeta1-C144. HA-tagged HSD-0.7 and FLAG-tagged Gbeta1 plasmids were constructed and co-transfected into human embryonal kidney 293 cells. Two proteins were localized at superimposable sites in the cytoplasm, and they formed a complex when 500 micromol/L GDP existed. Overexpression of HSD-0.7 activated the G-protein-mediated extracellular signal-regulated kinases (ERK1/2); however, the truncated fragments of HSD-0.7, which lacked either TPR domain or P-loop, lost the ability to activate the ERK1/2 pathway. Further study revealed that the activation of ERK1/2 was protein kinase C (PKC) rather than Ras dependent. These results provide evidence that HSD-3.8 present in spermatocytes and sperm may participate in spermatogenesis and fertilization process by activating the PKC-dependent ERK1/2 signal transduction pathway.