Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Plant Physiol ; 193(2): 1001-1015, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37394925

RESUMO

Cucumber (Cucumis sativus L.) flesh is typically colorless or pale green. Flesh with yellow or orange pigment, determined mainly by carotenoid content and composition, is mostly found in semi-wild Xishuangbanna cucumber, which has a very narrow genetic background. Here, we identified a spontaneous cucumber mutant with yellow flesh (yf-343), which accumulated more ß-cryptoxanthin and less lutein than regular cultivated European glasshouse-type cucumbers. Genetic analysis revealed that the yellow flesh phenotype was controlled by a single recessive gene. Through fine mapping and gene sequencing, we identified the candidate gene C. sativus yellow flesh 2 (Csyf2), encoding an abscisic acid (ABA) 8'-hydroxylase. Overexpression and RNAi-silencing of Csyf2 in cucumber hairy roots produced lower and higher ABA contents than in non-transgenic controls, respectively. Further, RNA-seq analysis suggested that genes related to ABA signal transduction were differentially expressed in fruit flesh between yf-343 and its wild type, BY, with white flesh. The carotenoid biosynthesis pathway was specifically enriched in fruit flesh at 30 days after pollination when yf-343 fruit flesh turns yellow. Our findings highlight a promising target for gene editing to increase carotenoid content, expanding our genetic resources for pigmented cucumber flesh breeding for improving the nutritional quality of cucumber.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Frutas/genética
3.
Hortic Res ; 10(1): uhac237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643740

RESUMO

Cucumber glossiness is an important visual quality trait that affects consumer choice. Accumulating evidence suggests that glossy trait is associated with cuticular wax accumulation. However, the molecular genetic mechanism controlling cucumber glossiness remains largely unknown. Here, we report the map-based cloning and functional characterization of CsGLF1, a locus that determines the glossy trait in cucumber. CsGLF1 encodes a homolog of the Cys2His2-like fold group (C2H2) -type zinc finger protein 6 (ZFP6) and its deletion leads to glossier pericarp and decreased cuticular wax accumulation. Consistently, transcriptomic analysis demonstrated that a group of wax biosynthetic genes were downregulated when CsZFP6 was absent. Further, transient expression assay revealed that CsZFP6 acted as a transcription activator of cuticular wax biosynthetic genes. Taken together, our findings demonstrated a novel regulator of fruit glossiness, which will provide new insights into regulatory mechanism of fruit glossiness in cucumber.

4.
J Integr Plant Biol ; 65(5): 1153-1169, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36573424

RESUMO

For adaptation to ever-changing environments, plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates (GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid (BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine (Cys) and glutathione (GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1 (BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5'-phosphosulfate reductases in the primary sulfur metabolic pathway. In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions. These findings expand our understanding of BR promoting plant growth from a metabolism perspective.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Enxofre/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Food Chem ; 315: 126275, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004982

RESUMO

The effects of individual epi-brassinolide (eBL) and NaCl, as well as their combination on contents of main phytochemicals and antioxidant capacity of Chinese kale sprouts were investigated. Our results showed that the application of 100 nM eBL decreased the contents of individual and total glucosinolates, while treatments of 160 mM NaCl both alone and combined with 100 nM eBL enhanced the glucosinolates accumulation by promoting the expression of genes involved in glucosinolate biosynthesis in Chinese kale sprouts and the combined treatment led to significantly higher content of most glucosinolate profiles. Moreover, it also elevated the contents of ascorbic acid and total carotenoids, whereas did not influence the total phenolics and antioxidant capacity. These findings indicated that the combined treatment of 100 nM eBL plus 160 mM NaCl could provide a new strategy to improve the main health promoting compounds in Chinese kale sprouts.


Assuntos
Brassica/química , Brassinosteroides/química , Compostos Fitoquímicos/química , Plântula/química , Cloreto de Sódio/química , Esteroides Heterocíclicos/química , Antioxidantes/química , Ácido Ascórbico/química , Carotenoides/química , Glucosinolatos/química , Fenóis/química , Cloreto de Sódio/farmacologia
6.
Sci Adv ; 5(8): eaav9801, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31457079

RESUMO

A parasite-infected host may promote performance of associated insect vectors; but possible parasite effects on nonvector insects have been largely unexplored. Here, we show that Begomovirus, the largest genus of plant viruses and transmitted exclusively by whitefly, reprogram plant immunity to promote the fitness of the vector and suppress performance of nonvector insects (i.e., cotton bollworm and aphid). Infected plants accumulated begomoviral ßC1 proteins in the phloem where they were bound to the plant transcription factor WRKY20. This viral hijacking of WRKY20 spatiotemporally redeployed plant chemical immunity within the leaf and had the asymmetrical benefiting effects on the begomoviruses and its whitefly vectors while negatively affecting two nonvector competitors. This type of interaction between a parasite and two types of herbivores, i.e., vectors and nonvectors, occurs widely in various natural and agricultural ecosystems; thus, our results have broad implications for the ecological significance of parasite-vector-host tripartite interactions.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Insetos/fisiologia , Imunidade Vegetal , Plantas/imunologia , Plantas/parasitologia , Plantas/virologia , Animais , Begomovirus , Hemípteros , Insetos Vetores , Doenças das Plantas/parasitologia , Transdução de Sinais
7.
Front Plant Sci ; 9: 1599, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459789

RESUMO

R2R3-MYB transcription factor MYB51 is known to control indole glucosinolate (indole GSL) biosynthesis in Arabidopsis. Here, two copies of BoaMYB51 have been isolated in Chinese kale (Brassica oleracea var. alboglabra Bailey), designated BoaMYB51.1 and BoaMYB51.2, which exhibit overlapping but distinct expression levels among different organs and respond to signaling molecules in a similar pattern. It has been demonstrated a structural and functional conservation between BoaMYB51s and AtMYB51 by phylogenetic analysis, complementation studies and transient expression assay. To further investigate the transcriptional mechanism, we identified the transcriptional activation domain (TAD) and putative interacting proteins of BoaMYB51s by means of yeast (Saccharomyces cerevisiae) two hybrid. Using tobacco (Nicotiana benthamiana) transient expression assay, we confirmed that the carboxy-end is required for transcriptional activation activity of BoaMYB51s. In addition, several BoaMYB51-interacting proteins have been identified by yeast two-hybrid screening. These results provide important insights into the molecular mechanisms by which MYB51 transcriptionally regulates indole GSL biosynthesis.

8.
Plant Sci ; 261: 1-9, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554688

RESUMO

Numerous studies have demonstrated the function of salinity or jasmonic acid (JA) in plant growth and senescence. This study evaluated how the combination of salinity and methyl jasmonate (MeJA) (SaM) worked as a novel stress and then regulated plant growth in Arabidopsis. Firstly, we found that compared with MeJA or NaCl treatment alone, SaM would significantly intensified plant growth inhibition and senescence in wild-type (WT) seedlings, and these phenotypes could be partially compromised after SaM stress in JA-insensitive mutants. Meanwhile, genes involved in JA signaling and Senescence Associated Gene 13 (SAG13) were dramatically increased by SaM stress than that by MeJA or NaCl alone in WT. Moreover, a group of secondary metabolite - indolic glucosinolates (IGs) showed obvious over-accumulation after SaM treatment than that after each single one in WT, and the seedlings treated with IGs' metabolites performed similar inhibited growth and chlorotic leaves phenotypes compared with those caused by SaM stress. All these indicated the toxicity of IGs and their metabolites would prevent the growth progress of plants. Therefore, we concluded that SaM worked as a novel stress and intensified plant growth inhibition and senescence, which was dependent on JA-dependent and -independent signaling pathways.


Assuntos
Acetatos/farmacologia , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Plântula/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Cloreto de Sódio/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/fisiologia
9.
Food Chem ; 222: 1-5, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28041552

RESUMO

The effects of pre-harvest red light irradiation on main healthy phytochemicals as well as antioxidant activity of Chinese kale sprouts during postharvest storage were investigated. 6-day-old sprouts were treated by red light for 24h before harvest and sampled for further analysis of nutritional quality on the first, second and third day after harvest. The results indicated that red light exposure notably postponed the degradation of aliphatic, indole, and total glucosinolates during postharvest storage. The vitamin C level was remarkably higher in red light treated sprouts on the first and second day after harvest when compared with the control. In addition, red light treatment also enhanced the accumulation of total phenolics and maintained higher level of antioxidant activity than the control. All above results suggested that pre-harvest red light treatment might provide a new strategy to maintain the nutritive value of Chinese kale sprouts during postharvest storage.


Assuntos
Antioxidantes/farmacologia , Brassica/efeitos da radiação , Irradiação de Alimentos , Extratos Vegetais/farmacologia , Brassica/química , Armazenamento de Alimentos , Luz , Valor Nutritivo , Compostos Fitoquímicos/análise
10.
J Proteome Res ; 15(10): 3528-3539, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27599093

RESUMO

Lead (Pb) pollution is a growing environment problem that continuously threatens the productivity of crops. To understand the molecular mechanisms of plant adaptation to Pb toxicity, we examined proteome changes in Arabidopsis seedlings following Pb treatment by SWATH-MS, a label-free quantitative proteomic platform. We identified and quantified the expression of 1719 proteins in water- and Pb-treated plants. Among them, 231 proteins showed significant abundance changes (151 elevated and 80 reduced) upon Pb exposure. Functional categorization revealed that most of the Pb-responsive proteins are involved in different metabolic processes. For example, down-regulation of photosynthesis and biosynthesis of isoprenoids and tetrapyrroles in chloroplasts were observed. On the contrary, pathways leading to glutathione, jasmonic acid (JA), glucosinolate (GSL), and phenylpropanoid production are up-regulated. Experimental characterizations demonstrated a rapid elevation of endogenic JA production in Pb-treated Arabidopsis seedlings, while a JA-deficient mutant and a JA-insensitive mutant showed hypersensitivity to root inhibition by Pb, implicating an essential role of JA during Pb responses. Consistently, methyl jasmonate supplementation alleviated Pb toxicity in the wild-type and JA-deficient mutant. Furthermore, GSL levels were substantially enhanced following Pb treatment, while such induction was not detected in the JA mutant, suggesting that the Pb-induced GSL accumulation is JA-dependent. Overall, our work represents the first SWATH-MS analysis in Arabidopsis and highlights a potential mediating role of JA during Pb stress.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Ciclopentanos/farmacologia , Chumbo/farmacologia , Oxilipinas/farmacologia , Proteômica/métodos , Adaptação Biológica/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Espectrometria de Massas , Proteoma/análise , Proteoma/efeitos dos fármacos , Plântula/fisiologia
11.
Sci Rep ; 6: 31854, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549907

RESUMO

The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis.


Assuntos
Arabidopsis/efeitos dos fármacos , Glucose/farmacologia , Glucosinolatos/biossíntese , Enxofre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosinolatos/metabolismo , Indóis/metabolismo , Mutação , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição/genética
12.
Food Chem ; 210: 451-6, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27211670

RESUMO

The effects of industrial pre-freezing processing and freezing handling on the contents of glucosinolates and antioxidants (vitamin C, polyphenols, carotenoid and chlorophyll), as well as the antioxidant capacity in broccoli (Brassica oleracea L. var. italica) florets were investigated in the present study. Our results showed that the glucosinolate accumulations were significantly decreased after pre-freezing processing, whereas elevated levels of phenols, carotenoids, chlorophyll, and also antioxidant capacity were observed in frozen broccoli florets. The contents of vitamin C remained constant during above mentioned processing. In conclusion, the current industrial freezing processing method is a good practice for the preservation of main antioxidant nutrients in broccoli florets, although some improvements in pre-freezing processing, such as steam blanching and ice-water cooling, are needed to attenuate the decrease in glucosinolate content.


Assuntos
Antioxidantes/química , Brassica/química , Manipulação de Alimentos/métodos , Congelamento , Glucosinolatos/química
13.
Food Chem ; 196: 1232-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26593611

RESUMO

The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts.


Assuntos
Antioxidantes/química , Brassica/química , Glucosinolatos/química , Antocianinas , Luz
14.
Plant J ; 81(6): 920-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25645692

RESUMO

The mycotoxin fumonisin B1 (FB1) causes the accumulation of reactive oxygen species (ROS) which then leads to programmed cell death (PCD) in Arabidopsis. In the process of studying FB1-induced biosynthesis of glucosinolates, we found that indole glucosinolate (IGS) is involved in attenuating FB1-induced PCD. Treatment with FB1 elevates the expression of genes related to the biosynthesis of camalexin and IGS. Mutants deficient in aliphatic glucosinolate (AGS) or camalexin biosynthesis display similar lesions to Col-0 upon FB1 infiltration; however, the cyp79B2 cyp79B3 double mutant, which lacks induction of both IGS and camalexin, displays more severe lesions. Based on the fact that the classic myrosinase ß-thioglucoside glucohydrolase (TGG)-deficient double mutant tgg1 tgg2, rather than atypical myrosinase-deficient mutant pen2-2, is more sensitive to FB1 than Col-0, and the elevated expression of TGG1, but not of PEN2, correlates with the decrease in IGS, we conclude that TGG-dependent IGS hydrolysis is involved in FB1-induced PCD. Indole-3-acetonitrile (IAN) and indole-3-carbinol (I3C), the common derivatives of IGS, were used in feeding experiments, and this rescued the severe cell death phenotype, which is associated with reduced accumulation of ROS as well as increased activity of antioxidant enzymes and ROS-scavenging ability. Despite the involvement of indole-3-acetic acid (IAA) in restricting FB1-induced PCD, feeding of IAN and I3C attenuated FB1-induced PCD in the IAA receptor mutant tir1-1 just as in Col-0. Taken together, our results indicate that TGG-catalyzed breakdown products of IGS decrease the accumulation of ROS by their antioxidant behavior, and attenuate FB1 induced PCD in an IAA-independent way.


Assuntos
Arabidopsis/fisiologia , Fumonisinas/farmacologia , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glicosídeo Hidrolases/genética , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Mutação , Tiazóis/metabolismo
15.
Food Chem ; 168: 321-6, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172716

RESUMO

The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale.


Assuntos
Brassica/química , Glucosinolatos/análise , Imidoésteres/análise , Engenharia Metabólica , Quinona Redutases/metabolismo , Ácido Ascórbico/análise , Brassica/metabolismo , Glucosinolatos/biossíntese , Oximas , Fenóis/análise , Plantas Geneticamente Modificadas/metabolismo , Sulfóxidos
16.
J Exp Bot ; 64(8): 2401-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23580754

RESUMO

The effect of 24-epibrassinolide (EBR) on glucosinolate biosynthesis in Arabidopsis thaliana was investigated in the present study by using mutants and transgenic plants involved in brassinosteroid (BR) biosynthesis and signal transduction, as well as glucosinolate biosynthesis. The results showed that EBR significantly decreased the contents of major aliphatic glucosinolates including glucoiberin (S3), glucoraphanin (S4), and glucoerucin (T4), as well as the indolic glucosinolates glucobrassicin (IM) and neoglucobrassicin (1IM). In addition, a significantly higher level of glucosinolates accumulated in the BR-deficient mutant cpd and a dramatically lower glucosinolate content in the transgenic plant DWF4-ox overexpressing the BR biosynthetic gene DWF4 compared with their related wild-types, confirmed the repressing effect of BR on glucosinolate biosynthesis. BRI1, the receptor of BR signal transduction, was involved in regulation of glucosinolate biosynthesis by BR. Furthermore, the observation of reduced content of glucosinolates and lower expression levels of glucosinolate biosynthetic genes in 35S-BZR1/bzr1-1D and bes1-D plants compared with the corresponding wild-types suggested that BZR1 and BES1, two important components in BR signal transduction, are responsible for the inhibiting role of BR in glucosinolate biosynthesis. The disappearance of the repressing effect of BR on glucosinolate content in the myb28, myb34, and myb122 mutants indicated that these three MYB factors are important for the regulation of BR in glucosinolate biosynthesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Glucosinolatos/biossíntese , Proteínas Nucleares/fisiologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/farmacologia , Proteínas de Ligação a DNA , Proteínas Nucleares/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esteroides Heterocíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA