Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res Bull ; 208: 110902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367675

RESUMO

BACKGROUND: Continuous theta burst stimulation and intermittent theta burst stimulation are clinically popular models of repetitive transcranial magnetic stimulation. However, they are limited by high variability between individuals in cortical excitability changes following stimulation. Although electroencephalography oscillations have been reported to modulate the cortical response to transcranial magnetic stimulation, their association remains unclear. This study aims to explore whether machine learning models based on EEG oscillation features can predict the cortical response to transcranial magnetic stimulation. METHOD: Twenty-three young, healthy adults attended two randomly assigned sessions for continuous and intermittent theta burst stimulation. In each session, ten minutes of resting-state electroencephalography were recorded before delivering brain stimulation. Participants were classified as responders or non-responders based on changes in resting motor thresholds. Support vector machines and multi-layer perceptrons were used to establish predictive models of individual responses to transcranial magnetic stimulation. RESULT: Among the evaluated algorithms, support vector machines achieved the best performance in discriminating responders from non-responders for intermittent theta burst stimulation (accuracy: 91.30%) and continuous theta burst stimulation (accuracy: 95.66%). The global clustering coefficient and global characteristic path length in the beta band had the greatest impact on model output. CONCLUSION: These findings suggest that EEG features can serve as markers of cortical response to transcranial magnetic stimulation. They offer insights into the association between neural oscillations and variability in individuals' responses to transcranial magnetic stimulation, aiding in the optimization of individualized protocols.


Assuntos
Excitabilidade Cortical , Estimulação Magnética Transcraniana , Adulto , Humanos , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Potencial Evocado Motor/fisiologia
2.
CNS Neurosci Ther ; 30(3): e14471, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718708

RESUMO

AIMS: Understanding the neural mechanisms underlying stroke recovery is critical to determine effective interventions for stroke rehabilitation. This study aims to systematically explore how recovery mechanisms post-stroke differ between individuals with different levels of functional integrity of the ipsilesional corticomotor pathway and motor function. METHODS: Eighty-one stroke survivors and 15 age-matched healthy adults participated in this study. We used transcranial magnetic stimulation (TMS), electroencephalography (EEG), and concurrent TMS-EEG to investigate longitudinal neurophysiological changes post-stroke, and their relationship with behavioral changes. Subgroup analysis was performed based on the presence of paretic motor evoked potentials and motor function. RESULTS: Functional connectivity was increased dramatically in low-functioning individuals without elicitable motor evoked potentials (MEPs), which showed a positive effect on motor recovery. Functional connectivity was increased gradually in higher-functioning individuals without elicitable MEP during stroke recovery and influence from the contralesional hemisphere played a key role in motor recovery. In individuals with elicitable MEPs, negative correlations between interhemispheric functional connectivity and motor function suggest that the influence from the contralesional hemisphere may be detrimental to motor recovery. CONCLUSION: Our results demonstrate prominent clinical implications for individualized stroke rehabilitation based on both functional integrity of the ipsilesional corticomotor pathway and motor function.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Eletroencefalografia , Potencial Evocado Motor/fisiologia
3.
Mol Neurobiol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37979035

RESUMO

Cytokines and growth factors contribute to nerve growth and angiogenesis and are associated with the development of vascular disease. This Mendelian randomization (MR) study was designed to examine the causal relationship between factors associated with stem cell paracrine mechanisms and with stroke and its subtypes. We used pooled statistics on cytokine levels from three studies (INTERIAL, Olink Proseek CVD array, and KORA) encompassing 7795 participants in Europe. Data for stroke and its subtypes were pooled from these European populations (40,585 cases and 406,111 controls) in a multiprogenitor genome-wide association study (GWAS). MR was performed using established analytical methods, including inverse variance weighting (IVW), weighted median (WM), and MR-Egger. Genetically determined high IGF-1 levels were found to associate negatively with risk of stroke, ischemic stroke (large-artery atherosclerosis), and ischemic stroke (cardiogenic embolism). Meanwhile, high IL-13 levels had a positive causal relationship with ischemic stroke (large-artery atherosclerosis). An additional 27 cytokines were found to have a causal association with stroke or its subtypes. However, these results should be interpreted with caution given that the power efficacy was <80%. This MR study supports the concept of a causal relationship of 29 cytokines with stroke or its subtypes. Our genetic analysis provides new insights into stroke prevention and treatment by demonstrating an association of stem cell paracrine-related cytokines with stroke risk.

4.
J Neural Transm (Vienna) ; 130(10): 1219-1230, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495840

RESUMO

More than half of stroke patients experience sensory dysfunction that affects their quality of life. Previous training modalities are ineffective in improving sensory function. In contrast, non-invasive brain stimulation (NIBS) is a new promising intervention for stroke rehabilitation. The aim of this meta-analysis was to summarize the current effectiveness of NIBS in the treatment of post-stroke sensory dysfunction. Articles published in PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), Chinese scientific journals full-text database (VIP), and Wanfang database from the inception to March 8, 2023 were searched. There were no restrictions on language. A total of 14 RCTs were included (combined n = 804). Moderate-quality evidence suggested that NIBS significantly improved sensory function after stroke, and significant effects were observed up to 1 year after the intervention. In subgroup analysis, treatment with transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) was significantly more effective than controls for recovery of sensory function in stroke patients. Stimulation of the primary motor cortex (M1), primary somatosensory cortex (S1) or M1 + S1 stimulation sites significantly improved sensory function. NIBS for sensory dysfunction showed significant therapeutic potential in patients with different stages of stroke. No significant effects were observed in subjects with less than 10 NIBS stimulations. Significant therapeutic effects were observed with either high-frequency or low-frequency rTMS.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos , Encéfalo/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/classificação , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Resultado do Tratamento
5.
Chemosphere ; 329: 138622, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037357

RESUMO

Heavy metals in water are critical global environmental problems. In particular, the anionic heavy metal chromium (Cr) has carcinogenic and genotoxic risks on human health. To this end, an ultralight and flexible nanofibrillated cellulose (NFC)/chitosan (CS) aerogel was developed only by freeze-drying combined with physical thermal cross-linking for efficient one step co-removal of Cr(VI) and Cr(III). The maximum adsorption capacity of Cr(VI) and total Cr calculated according to the Langmuir model was 197.33 and 134.12 mg/g, respectively. Even in the presence of competing soluble organics, anions and oil contaminants, the resulting NFC/CS-5 aerogels showed excellent selectivity. The aerogel exhibited outstanding mechanical integrity, remaining intact after 17 compressions in air and underwater. Meanwhile, after 5 adsorption-desorption cycles, the aerogel was easy to regenerate and maintained a high regeneration efficiency of 80.25%. Importantly, self-assembled NFC/CS-5 aerogel filter connected with the peristaltic pump could purify 752 mL of industrial wastewater with Cr(VI) pre-concentration capacity of 49.71 mg/g. XPS and FT-IR verified that electrostatic interactions, reduction and complexation acted as the main driving forces for the adsorption process. Moreover, such aerogel possessed broad application prospects for alleviating heavy metal pollution in agriculture.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Humanos , Celulose , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Cromo , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Cinética
6.
Carbohydr Polym ; 311: 120752, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028855

RESUMO

The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Hidróxidos/química , Tetraciclina/química , Adsorção , Poluentes Químicos da Água/química , Cinética
7.
Front Neurosci ; 17: 1131862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937674

RESUMO

Objective: The ability of motor-inhibitory control is critical in daily life. The physiological mechanisms underlying motor inhibitory control deficits remain to be elucidated. Beta band oscillations have been suggested to be related to motor performance, but whether they relate to motor-inhibitory control remains unclear. This study is aimed at systematically investigating the relationship between beta band oscillations and motor-inhibitory control to determine whether beta band oscillations were related to the ability of motor-inhibitory control. Methods: We studied 30 healthy young adults (age: 21.6 ± 1.5 years). Stop-signal reaction time (SSRT) was derived from stop signal task, indicating the ability of motor-inhibitory control. Resting-state electroencephalography (EEG) was recorded for 12 min. Beta band power and functional connectivity (including global efficiency) were calculated. Correlations between beta band oscillations and SSRT were performed. Results: Beta band EEG power in left and right motor cortex (MC), right somatosensory cortex (SC), and right inferior frontal cortex (IFC) was positively correlated with SSRT (P's = 0.031, 0.021, 0.045, and 0.015, respectively). Beta band coherence between bilateral MC, SC, and IFC was also positively correlated with SSRT (P's < 0.05). Beta band global efficiency was positively correlated with SSRT (P = 0.01). Conclusion: This is the first study to investigate the relationship between resting-state cortical beta oscillations and response inhibition. Our findings revealed that individuals with better ability of motor inhibitory control tend to have less cortical beta band power and functional connectivity. This study has clinical significance on the underlying mechanisms of motor inhibitory control deficits.

8.
Front Neurosci ; 16: 998820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340781

RESUMO

Background: Stroke is the second leading cause of death worldwide, with a large proportion of survivors suffering from motor dysfunction and neuropsychiatric sequelae. Repetitive transcranial magnetic stimulation (rTMS) is a promising stroke rehabilitation intervention and is effective in improving neurological system function in stroke patients. In the current systemic review and meta-analysis, an overview of the most recent studies regarding the effectiveness of rTMS's potential to help chronic stroke patients recover from sequelae was provided. Methods: Relevant randomized controlled trials were retrieved from three online databases (Web of Science, Medline, and Embase). A total of 25 RCTs (N = 535 participants) were included. A meta-analysis was performed using a fixed-effects model or a random-effects model, and effect sizes were reported as weighted mean differences or standardized mean differences. Results: Administration of rTMS significantly improved upper limb function, hand function, and muscle tone in stroke patients throughout the chronic phase [≥6 months], but not lower limb mobility and strength. In terms of cognitive function, rTMS has a considerable positive impact on patients' cognitive performance. rTMS also alleviated apathy in stroke patients more than post-stroke depressive symptoms regarding mental functioning. Balance and walking function, as well as functional activities of daily living, of patients were dramatically improved by rTMS. However, the current conclusions should be taken carefully due to the small sample size of the meta-analysis. Conclusions: This is the first meta-analysis of rTMS treatment in patients with chronic stroke to inform the selection of the optimal treatment strategy for patients with chronic stroke, which demonstrated that rTMS treatment has the potential to improve the effects of sequelae by improving upper limb function, hand function, and muscle tone. Systematic review registration: https://inplasy.com/inplasy-2022-7-0095/, identifier: INPLASY202270095.

9.
Environ Int ; 169: 107508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108502

RESUMO

Unprecedented urbanization-induced population migration in China severely affects the scale and geographic distribution of anthropogenic pollutant discharge. Understanding how pollutant discharge patterns respond to population migration can help guide future efforts to maintain water sustainability. Here, based on a new calculation framework with 18 dynamic parameters designed for anthropogenic discharges, we finely tracked and visualized the effects of population migration on the spatial and temporal changes in anthropogenic discharge from 1980 to 2019 in the Minjiang River basin. The results indicate that the increasing effect of population migration on anthropogenic discharges peaked in 2002 and started to contribute to pollutant reduction from 2010 onward. The direct impact of population migration only contributes to the shift of anthropogenic discharges from rural to urban areas, while the migration bonus is the key factor leading to the reduction in anthropogenic discharges. Population migration is highly beneficial for chemical oxygen demand (COD) reduction, which has contributed to a shift from COD to NH4+-N and total phosphorus (TP) as hotspot pollutants in the whole basin (NH4+-N in urban areas and TP in rural areas). Moreover, pollution reduction resulting from the demographic bonus phenomenon has remained limited only to urban areas. Since approximately 2010, the per capita amount and total amount of anthropogenic pollutant discharges in rural areas have exceeded those in urban areas; in particular, the per capita COD and TP discharges in rural areas reached four times those in urban areas. This suggests that future pollution control strategies should give more attention to rural areas and focus on the differentiation and targeting of urban and rural areas.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Rios , Água , Poluentes Químicos da Água/análise
10.
Front Neurol ; 13: 940467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968309

RESUMO

Background: Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention for stroke rehabilitation. Several studies have demonstrated the effectiveness of rTMS in restoring motor function. This meta-analysis aimed to summarize the current evidence of the effect of rTMS in improving upper limb function and fine motor recovery in stroke patients. Methods: Three online databases (Web of Science, PubMed, and Embase) were searched for relevant randomized controlled trials. A total of 45 studies (combined n = 2064) were included. Random effects model was used for meta-analysis and effect size was reported as standardized mean difference (SMD). Results: rTMS was effective in improving fine motor function in stroke patients (SMD, 0.38; 95% CI 0.19-0.58; P = 0). On subgroup analyses, for post-stroke functional improvement of the upper extremity, bilateral hemisphere stimulation was more effective than unilateral stimulation during the acute phase of stroke, and a regimen of 20 rTMS sessions produced greater improvement than <20 sessions. In the subacute phase of stroke, affected hemispheric stimulation with a 40-session rTMS regimen was superior to unaffected hemispheric stimulation or bilateral hemispheric stimulation with <40 sessions. Unaffected site stimulation with a 10-session rTMS regimen produced significant improvement in the chronic phase compared to affected side stimulation and bilateral stimulation with >10 rTMS sessions. For the rTMS stimulation method, both TBS and rTMS were found to be significantly more effective in the acute phase of stroke, but TBS was more effective than rTMS. However, rTMS was found to be more effective than TBS stimulation in patients in the subacute and chronic phases of stroke. rTMS significantly improved upper limb and fine function in the short term (0-1-month post-intervention) and medium term (2-5 months), but not for upper limb function in the long term (6 months+). The results should be interpreted with caution due to significant heterogeneity. Conclusions: This updated meta-analysis provides robust evidence of the efficacy of rTMS treatment in improving upper extremity and fine function during various phases of stroke. Systematic Review Registration: https://inplasy.com/inplasy-2022-5-0121/, identifier: INPLASY202250121.

11.
Mediators Inflamm ; 2022: 2140524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032783

RESUMO

Amyloid-ß (Aß) deposition plays a crucial role in the occurrence and development of Alzheimer's disease (AD), and impaired Aß clearance is the leading cause of Aß deposition. Recently, studies have found that the glymphatic system performs similar functions to the peripheral lymphatic system. Glymphatic fluid transport mainly consists of cerebrospinal fluid (CSF) entering the brain from the paravascular space (PVS) by penetrating arteries and CSF and interstitial fluid exchanging mediated by aquaporin-4 (AQP4). This system promotes the drainage of interstitial fluid (ISF) in the parenchyma and removes metabolic waste, including Aß, in the brain. Glymphatic system dysfunction plays an essential role in the occurrence and progression of AD. Regulation of glymphatic fluid transport may be a critical target for AD therapy. This study explored the regulatory effects of continuous theta-burst stimulation (CTBS) on the glymphatic system in APPswe/PS1dE9 (APP/PS1) mice with two-photon imaging. The results demonstrated that CTBS could increase glymphatic fluid transport, especially CSF and ISF exchange, mediated by improved AQP4 polarization. In addition, the accelerated glymphatic pathway reduced Aß deposition and enhanced spatial memory cognition. It provided new insight into the clinical prevention and treatment of Aß deposition-related diseases.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Peptídeos beta-Amiloides , Animais , Aquaporina 4 , Encéfalo , Líquido Extracelular , Camundongos , Estimulação Magnética Transcraniana
12.
Water Res ; 222: 118839, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870396

RESUMO

Manganese (Mn)-containing composite metal adsorbents are very effective at removing arsenite (As(III)) from contaminated water, however, the low removal speed and oxidation efficiency have limited their further application. In this study, a nonhomogeneous catalytic oxidation-adsorption system was constructed by coupling iron-manganese composite oxide (FeMnOx) with sulfite (S(IV)) to enhance the recovery of oxidative capacity and accelerate the removal of As(III). Experimental results showed that the FeMnOx/S(IV) system decreased the As(III) concentration from 1079 to <10 µg/L within 10 min and almost completely oxidized As(III) to As(V). In contrast, FeMnOx alone removed only 82.4% of As(III) within 30 min, and 60.0% of the adsorbed As(III) was not oxidized. Meanwhile, the adsorption capacity of FeMnOx/S(IV) system for As(III) was considerably higher than that of the only-FeMnOx system (76.5 > 46.3 mg/g). The efficient and fast As(III) removal was attributed to the SO5•- radical generated by S(IV) acting as the driving force for the redox cycle between As(III) and Mn(II/III/IV). Several environmental factors (e.g., solution pH and inorganic anions) and the reusability and practicality of FeMnOx were systematically investigated, and the results further confirmed the superiority of the FeMnOx/S(IV) system in As(III) removal. In particular, the proposed FeMnOx nanocellulose aerogel effectively purified arsenic-contaminated groundwater using a fixed-bed column. Thus, FeMnOx-S(IV) coupling is very promising for the purification of arsenic-contaminated water bodies.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Ferro , Manganês , Oxirredução , Óxidos , Sulfitos , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
13.
Front Aging Neurosci ; 14: 818340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197845

RESUMO

OBJECTIVE: Intermittent theta burst stimulation (iTBS) has been widely used as a neural modulation approach in stroke rehabilitation. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers a chance to directly measure cortical reactivity and oscillatory dynamics and allows for investigating neural effects induced by iTBS in all stroke survivors including individuals without recordable MEPs. Here, we used TMS-EEG to investigate aftereffects of iTBS following stroke. METHODS: We studied 22 stroke survivors (age: 65.2 ± 11.4 years; chronicity: 4.1 ± 3.5 months) with upper limb motor deficits. Upper-extremity component of Fugl-Meyer motor function assessment and action research arm test were used to measure motor function of stroke survivors. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS applied over the ipsilesional primary motor cortex. TMS-EEG recordings were performed at baseline and immediately after Active or Sham iTBS. Time and time-frequency domain analyses were performed for quantifying TMS-evoked EEG responses. RESULTS: At baseline, natural frequency was slower in the ipsilesional compared with the contralesional hemisphere (P = 0.006). Baseline natural frequency in the ipsilesional hemisphere was positively correlated with upper limb motor function following stroke (P = 0.007). After iTBS, natural frequency in the ipsilesional hemisphere was significantly increased (P < 0.001). CONCLUSIONS: This is the first study to investigate the acute neural adaptations after iTBS in stroke survivors using TMS-EEG. Our results revealed that natural frequency is altered following stroke which is related to motor impairments. iTBS increases natural frequency in the ipsilesional motor cortex in stroke survivors. Our findings implicate that iTBS holds the potential to normalize natural frequency in stroke survivors, which can be utilized in stroke rehabilitation.

14.
J Hazard Mater ; 422: 126908, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418837

RESUMO

Here, we prepared a novel nanostructured Fe-Cu-Mn composite oxide (FCMOx) adsorbent using an ultrasonic coprecipitation method. The maximum adsorption capacity of As(III) and As(V) reached 158.5 and 115.2 mg/g under neutral conditions, respectively. The effects of several environmental factors (coexisting ions, solution pH, etc.) on the removal of inorganic arsenic using FCMOx were studied through batch experiments. The results showed that except for PO43- and high initial pH, it was not significantly affected by ionic strength and other existing anions, implying a higher selectivity and adaptability. Combined with EPR, FTIR, and XPS analysis, we concluded that the Cu component and the reactive oxygen species (ROS) it generates played a decisive role in maintaining the stability of the redox cycle between Mn(IV)/Mn(III)/Mn(II) and enhancing the oxidation efficiency of As(III). Meanwhile, the adsorption mechanism of As(V) was mainly through the replacement of the FCMOx surface -OH to form stable inner-sphere arsenic complexes, while the removal mechanism of As(III) may involve the process of synergistic oxidation and chemisorption coupling. Additionally, the effective removal of As from the simulated As-contaminated water and its satisfactory reuse performance make FCMOx adsorbents favorable candidates for the removal of As-contaminated water in the future.

15.
Front Neurosci ; 15: 755709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744616

RESUMO

Objective: Intermittent theta burst stimulation (iTBS) is a special form of repetitive transcranial magnetic stimulation (rTMS), which effectively increases cortical excitability and has been widely used as a neural modulation approach in stroke rehabilitation. As effects of iTBS are typically investigated by motor evoked potentials, how iTBS influences functional brain network following stroke remains unclear. Resting-state electroencephalography (EEG) has been suggested to be a sensitive measure for evaluating effects of rTMS on brain functional activity and network. Here, we used resting-state EEG to investigate the effects of iTBS on functional brain network in stroke survivors. Methods: We studied thirty stroke survivors (age: 63.1 ± 12.1 years; chronicity: 4.0 ± 3.8 months; UE FMA: 26.6 ± 19.4/66) with upper limb motor dysfunction. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS over the ipsilesional primary motor cortex. Resting-state EEG was recorded at baseline and immediately after iTBS to assess the effects of iTBS on functional brain network. Results: Delta and theta bands interhemispheric functional connectivity were significantly increased after Active iTBS (P = 0.038 and 0.011, respectively), but were not significantly changed after Sham iTBS (P = 0.327 and 0.342, respectively). Delta and beta bands global efficiency were also significantly increased after Active iTBS (P = 0.013 and 0.0003, respectively), but not after Sham iTBS (P = 0.586 and 0.954, respectively). Conclusion: This is the first study that used EEG to investigate the acute neuroplastic changes after iTBS following stroke. Our findings for the first time provide evidence that iTBS modulates brain network functioning in stroke survivors. Acute increase in interhemispheric functional connectivity and global efficiency after iTBS suggest that iTBS has the potential to normalize brain network functioning following stroke, which can be utilized in stroke rehabilitation.

16.
Front Behav Neurosci ; 15: 696577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566591

RESUMO

Background and Objective: Placebo and nocebo responses are widely observed. Herein, we investigated the nocebo hyperalgesia and placebo analgesia responses in brain network in acute lower back pain (ALBP) model using multivariate Granger causality analysis (GCA). This approach analyses functional magnetic resonance imaging (fMRI) data for lagged-temporal correlation between different brain areas. Method: After completing the ALBP model, 20 healthy subjects were given two interventions, once during a placebo intervention and once during a nocebo intervention, pseudo-randomly ordered. fMRI scans were performed synchronously during each intervention, and visual analog scale (VAS) scores were collected at the end of each intervention. The fMRI data were then analyzed using multivariate GCA. Results: Our results found statistically significant differences in VAS scores from baseline (pain status) for both placebo and nocebo interventions, as well as between placebo and nocebo interventions. In placebo network, we found a negative lagged-temporal correlation between multiple brain areas, including the dorsolateral prefrontal cortex (DLPFC), secondary somatosensory cortex area, anterior cingulate cortex (ACC), and insular cortex (IC); and a positive lagged-temporal correlation between multiple brain areas, including IC, thalamus, ACC, as well as the supplementary motor area (SMA). In the nocebo network, we also found a positive lagged-temporal correlation between multiple brain areas, including the primary somatosensory cortex area, caudate, DLPFC and SMA. Conclusion: The results of this study suggest that both pain-related network and reward system are involved in placebo and nocebo responses. The placebo response mainly works by activating the reward system and inhibiting pain-related network, while the nocebo response is the opposite. Placebo network also involves the activation of opioid-mediated analgesia system (OMAS) and emotion pathway, while nocebo network involves the deactivation of emotional control. At the same time, through the construction of the GC network, we verified our hypothesis that nocebo and placebo networks share part of the same brain regions, but the two networks also have their own unique structural features.

17.
Front Neurosci ; 15: 722231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497490

RESUMO

Transcranial magnetic stimulation (TMS) has a wide range of clinical applications, and there is growing interest in neural oscillations and corticospinal excitability determined by TMS. Previous studies have shown that corticospinal excitability is influenced by fluctuations of brain oscillations in the sensorimotor region, but it is unclear whether brain network activity modulates corticospinal excitability. Here, we addressed this question by recording electroencephalography (EEG) and TMS measurements in 32 healthy individuals. The resting motor threshold (RMT) and active motor threshold (AMT) were determined as markers of corticospinal excitability. The least absolute shrinkage and selection operator (LASSO) was used to identify significant EEG metrics and then correlation analysis was performed. The analysis revealed that alpha2 power in the sensorimotor region was inversely correlated with RMT and AMT. Innovatively, graph theory was used to construct a brain network, and the relationship between the brain network and corticospinal excitability was explored. It was found that the global efficiency in the theta band was positively correlated with RMT. Additionally, the global efficiency in the alpha2 band was negatively correlated with RMT and AMT. These findings indicated that corticospinal excitability can be modulated by the power spectrum in sensorimotor regions and the global efficiency of functional networks. EEG network analysis can provide a useful supplement for studying the association between EEG oscillations and corticospinal excitability.

18.
Front Behav Neurosci ; 15: 657517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497495

RESUMO

OBJECTIVE: Placebo as well as nocebo responses are widely found in scientific research and clinical practice. Growing evidence suggests sex differences in placebo as well as nocebo responses. However, data concerning this question are still insufficient. This study examined whether the BOLD signals of two responses, as measured with functional MRI (fMRI), differ by sex under conditions of equivalent experimental pain perception. METHOD: Thirty-one healthy volunteers (14 female) underwent two fMRI scans, once during a placebo intervention and once during a nocebo intervention, pseudorandomly ordered, in an acute lower back pain (ALBP) model. We collected visual analog scale (VAS) data after each scanning. fMRI data from different sex groups were subjected to functional connectivity (FC) analysis and behavioral correlation analysis (BCA). RESULTS: The results showed statistical differences in VAS scores between male and female participants, in both placebo and nocebo responses. Both groups also showed reduced FC in the pain-associated network of the placebo response and elevated FC in the pain-related network of the nocebo response. However, in the placebo condition, male participants displayed increased FC in the ventromedial prefrontal cortex, parahippocampal gyrus (PHP), and posterior cingulate cortex (PCC), while female participants showed increased FC in the dorsolateral prefrontal cortex, hippocampal gyrus (HP), and insular cortex (IC). In the nocebo condition, male participants showed decreased FC in the PCC and HP, while female participants displayed decreased FC in the mid-cingulate cortex, thalamus (THS), and HP. The BCA results of the two groups were also different. CONCLUSION: We found that the endogenous opioid system and reward circuit play a key role in sex differences of placebo response and that anxiety and its secondary reactions may cause the sex differences of nocebo response.

19.
Ann Transl Med ; 9(5): 371, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33842592

RESUMO

BACKGROUND: Placebo and nocebo responses have been increasingly gaining the attention of clinical and scientific researchers. Inconsistent conclusions from current studies indicate that different factors potentially affect both placebo and nocebo responses. Increasing evidence suggests that personality differences may affect the mechanisms of both two responses. In the present work, we explored the characteristics of neural signals of placebo and nocebo responses based on functional connectivity (FC) analysis and Granger causality analysis (GCA). METHODS: A total of 34 healthy participants received conditional induction training to establish placebo and nocebo responses. Every participant completed the following experimental workflow, including scanning of baseline, experimental low back pain model establishment, scanning of acute pain status, and scanning of placebo response or nocebo response. We collect visual analogue scale (VAS) data after each scanning. Functional magnetic resonance imaging (fMRI) data from different personality groups were subjected to FC analysis and multivariate GCA (mGCA). RESULTS: Pain scores for placebo and nocebo responses were statistically different across different personality. There are also statistically differences in the neural signals of two responses across different personality. CONCLUSIONS: The findings of the present study indicated that extroverted and introverted participants are likely to experience placebo analgesic effects and nocebo hyperalgesia effects, respectively. Both extroverted and introverted participants showed significant changes in brain networks under placebo response. Variation in emotional control and ventromedial prefrontal cortex inactivity may constitute the bulk of the personality differences in placebo analgesia. Differences in the regulation of the sensory conduction system (SCS) and release of the emotional circuit could be important factors affecting personality differences in nocebo hyperalgesia.

20.
Behav Brain Res ; 407: 113266, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33794226

RESUMO

The ability of motor-inhibitory control is important in daily life. Inhibitory control deficits are commonly observed in psychiatric conditions with enhanced impulsivity. The physiological mechanisms underlying the inhibitory control deficits are not well elucidated. We systematically investigated the relationship between resting-state intracortical inhibition or facilitation and inhibitory control (indicated by stop signal reaction time, SSRT) to determine whether reduced intracortical inhibition or increased intracortical facilitation was related to the poorer inhibitory control. Thirty-three healthy subjects (age: 21.46 ± 1.40 years) participated in this study. We used paired-pulse transcranial magnetic stimulation to induce short intracortical inhibition, intracortical facilitation, long intracortical inhibition, and short intracortical facilitation at rest. SSRT was derived from stop signal task. We performed all measurements in two repeat sessions conducted two weeks apart. A negative correlation between short intracortical inhibition and SSRT was only observed in session 1; however, the correlation did not persist after controlling for short intracortical facilitation. Positive correlation between short intracortical facilitation and SSRT was observed in both sessions, indicating that individuals with greater resting-state short intracortical facilitation tend to have less efficient stopping performance. Our results help explain the inconsistency with respect to the relationship between short intracortical inhibition and SSRT in the existing literature. Short intracortical facilitation may be used as a potential physiological biomarker for motor-inhibitory control, which may have clinical implications for disorders associated with inhibitory control deficits.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Função Executiva/fisiologia , Comportamento Impulsivo/fisiologia , Inibição Psicológica , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA