Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Epigenomics ; 16(4): 215-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38318853

RESUMO

Background: Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of PTPRG-AS1 in ferroptosis of TNBC was investigated. Methods: Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe2+ and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed in vivo. Results: PTPRG-AS1 was increased in TNBC tissues and cells. PTPRG-AS1 silencing increased the reduction of glutathione and GPX4, increased Fe2+ and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated PTPRG-AS1. PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11. PTPRG-AS1 knockdown suppressed tumor growth in vivo. Conclusion: POU2F2 transcriptionally activates PTPRG-AS1 to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.


Triple-negative breast cancer (TNBC) is a kind of breast cancer with high recurrence and low survival rates. Activation of the ferroptosis pathway can inhibit BC proliferation and distant metastasis. Therefore, identifying effective biomarkers and molecular mechanisms of ferroptosis in TNBC is important for its earlier detection and therapy. PTPRG-AS1 is a new type of lncRNA discovered in recent years that is increased in various diseases and is related to prognosis. In the present study, the authors found that POU2F2 promoted PTPRG-AS1 transcription. PTPRG-AS1 knockdown activated ferroptosis in TNBC and inhibited proliferation. Mechanistically, PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11, thereby inhibiting ferroptosis and promoting TNBC development. These results indicate that PTPRG-AS1 is a possible therapeutic target in TNBC.


Assuntos
Ferroptose , MicroRNAs , Fator 2 de Transcrição de Octâmero , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator 2 de Transcrição de Octâmero/genética , Espécies Reativas de Oxigênio , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
2.
Front Plant Sci ; 14: 1200136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409299

RESUMO

Background: Tobacco bacterial wilt (TBW) and black shank (TBS) are responsible for substantial economic losses worldwide; however, microbial interactions and metabolisms in response to TBW and TBS pathogens in the tobacco rhizosphere remain unclear. Methods: We explored and compared the response of rhizosphere microbial communities to these two plant diseases with the incidences in moderate and heavy degrees by sequencing of 16S rRNA gene amplicons and bioinformatics analysis. Results and discussions: We found that the structure of rhizosphere soil bacterial communities was significantly (p < 0.05) changed from the incidences of TBW and TBS, which also led to decreased Shannon diversity and Pielou evenness. Compared with the healthy group (CK), the OTUs with significantly (p < 0.05) decreased relative abundances were mostly affiliated with Actinobacteria (e.g., Streptomyces and Arthrobacter) in the diseased groups, and the OTUs with significantly (p < 0.05) increased relative abundances were mainly identified as Proteobacteria and Acidobacteria. Also, molecular ecological network analysis showed that the nodes (<467) and links (<641) were decreased in the diseased groups compared with the control group (572; 1056), suggesting that both TBW and TBS weakened bacterial interactions. In addition, the predictive functional analysis indicated that the relative abundance of genes related to the biosynthesis of antibiotics (e.g., ansamycins and streptomycin) was significantly (p < 0.05) decreased due to incidences of TBW and TBS, and antimicrobial tests showed that some Actinobacteria strains (e.g., Streptomyces) and their secreted antibiotics (e.g., streptomycin) could effectively inhibit the growth of these two pathogens.

3.
Curr Microbiol ; 79(6): 176, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488936

RESUMO

The root phenotypic traits have been considered as important factors in shaping the rhizosphere microbiome and regulating plant growth. However, the relationships between root phenotypic traits and the rhizosphere bacterial community remain unclear. We investigated two fields with different developing tobacco roots by a long-term positioning test in Hengshi. The well-developed root system (WDR) showed much more superiority in root phenotypic traits, including total root length, total projection area, surface area, and root tip number, than the underdeveloped root system. The specific root traits in WDR provided more ecological niches for the rhizosphere microorganisms, contributing to a more diverse microbial community and a more complex microbial network. The total root length and root tip number were the key factors shaping bacterial communities in the rhizosphere. In turn, the phyla Acidobacteria and Bacteroidetes might play vital roles in modifying root development and promoting plant growth according to their positive correlation with root phenotypic traits. Linking root phenotypic traits to the microbiome may enhance our understanding of rhizospheric interactions and their roles in developing rhizosphere ecosystems.


Assuntos
Microbiota , Rizosfera , Bactérias/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo
4.
Environ Sci Pollut Res Int ; 28(18): 23113-23122, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33439443

RESUMO

As a highly efficient insecticide, thiamethoxam was widely used in the world. However, it was bioaccumulative and toxic to aquatic organisms that must be removed from water. In this work, nanoscale zero-valent iron particles loaded on montmorillonite (nZVI/Mt) were successfully synthesized for effective removal of thiamethoxam. The properties of nZVI/Mt for the removal of thiamethoxam were investigated, and the reaction conditions were optimized through response surface methodology. Furthermore, the degradation products were analyzed by liquid chromatography-mass spectrometry (LC/MS). The results demonstrated that the reaction activity of nZVI was enhanced because the agglomeration and oxidation of nZVI particles were effectively inhibited by using montmorillonite as a support. The significance of the effects of each factor on the removal of thiamethoxam was determined to be in the order of pH Ëƒ temperature Ëƒ reaction time Ëƒ nZVI/Mt dosage. The optimal conditions were as follows: a dosage of nZVI/Mt of 2 g/L, a reaction time of 2 h, a reaction temperature of 35 °C, and a solution pH of 3. The removal efficiency of thiamethoxam (C0 = 20 mg/L) was observed to be as high as 94.29% under the optimal conditions, which was close to the value of 94.47% that was predicted using the mathematical model, indicating that the model could accurately predict the removal efficiency of thiamethoxam. The degradation mechanism involved the -NO2 group on the thiamethoxam molecule was reduced and eliminated by nZVI/Mt.


Assuntos
Bentonita , Poluentes Químicos da Água , Ferro , Oxirredução , Tiametoxam , Poluentes Químicos da Água/análise
5.
Plant Cell Physiol ; 58(9): 1583-1593, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922747

RESUMO

Tobacco (Nicotiana tabacum) is a cadmium (Cd) accumulator, and smoking is a major source of Cd exposure. In the present study, we identified two tobacco cultivars with contrasting phenotypes of Cd and manganese (Mn) accumulation in both hydroponic and soil pot experiments. Physiological experiments showed that the two cultivars differed in Cd uptake, but not in Cd translocation from roots to shoots. A homolog of OsNramp5 (natural resistance-associated macrophage protein 5), NtNramp5, was isolated from both cultivars. There was no significant difference in the expression level of NtNramp5 in the roots between the two cultivars. Sequence analysis revealed that the low Cd/Mn-accumulating cultivar possesses an NtNramp5 allele with a predicted mutation for early translation termination, resulting in a truncated protein missing 104 amino acids in the C-terminus of the full-length NtNramp5 found in the high Cd/Mn-accumulating cultivar. Both proteins were found to be localized to the plasma membrane. Heterologous expression of the two alleles of NtNramp5 in yeast showed that the full-length protein had transport activities for both Mn and Cd, whereas the truncated protein had no transport activity for Mn and a weak transport activity for Cd. These results suggest that NtNramp5 is a transporter for Mn and Cd, and the allelic variation in the coding region of NtNramp5 probaby explains the cultivar difference in Cd and Mn accumulation.


Assuntos
Alelos , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Variação Genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Bioensaio , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Cinética , Fases de Leitura Aberta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA