Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33062022

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) is used as an adjuvant drug for the treatment of chronic hepatitis B liver fibrosis and is used frequently. We still do not know which TCM has the best curative effect as an adjuvant drug. Therefore, we decided to use network meta-analysis to solve this problem. METHODS: We used the RevMan software (5.3) and Stata software (13.0) to achieve this network meta-analysis (NMA). The primary outcomes of this study were HA, LN, PCIII, and IV-C; the secondary outcomes of this study were AST, ALT, and HBV-DNA negative conversion rate, and the Cochrane risk-of-bias tool was used to assess the quality of the included studies. For all outcomes, the scissors funnel plot, Egger test, and Begg test were used to detect publication bias, and sensitivity analysis was used to investigate the stability of the results. And the meta-regression was used to explore the source of heterogeneity. RESULTS: A total of 34 articles were included in this study. The study involved a total of 3199 patients, of which 1578 were assigned to the control group and 1621 patients were assigned to the experimental group. The number of men and women is roughly equal, and the average age is about 43 years old. In addition, nine treatment strategies were involved in this study. The combination of TCM and entecavir can significantly improve the patients' HA, LN, PCIII, IV-C, AST, ALT, and HBV-DNA negative conversion rates. The comprehensive evaluation results showed that FHC combined with entecavir has more advantages than other treatment strategies. CONCLUSION: For improving the HBV-DNA negative conversion rates, adding TCM to the therapeutic strategies does not seem to show absolute superiority. Finally, FHC combined with entecavir is the best therapeutic strategy.

2.
Life Sci ; 248: 117456, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32097666

RESUMO

AIMS: In this study, we will investigate the therapeutic effects of berberine (BBR) in Helicobacter pylori (H. pylori) induced chronic atrophic gastritis (CAG). Furthermore, potential mechanisms of BBR in regulating IRF8-IFN-γ signaling axis will also be investigated. MATERIALS AND METHODS: H. pylori were utilized to establish CAG model of rats. Therapeutic effects of BBR on serum supernatant indices, and histopathology of stomach were analyzed in vivo. Moreover, GES-1 cells were infected by H. pylori, and intervened with BBR in vitro. Cell viability, morphology, proliferation, and quantitative analysis were detected by high-content screening (HCS) imaging assay. To further investigate the potential mechanisms of BBR, relative mRNA, immunohistochemistry and protein expression in IRF8-IFN-γ signaling axis were measured. KEY FINDINGS: Results showed serum supernatant indices including IL-17, CXCL1, and CXCL9 were downregulated by BBR intervention, while, G-17 increased significantly. Histological injuries of gastric mucosa induced by H. pylori also were alleviated. Moreover, cell viability and morphology changes of GES-1 cells were improved by BBR intervention. In addition, proinflammatory genes and IRF8-IFN-γ signaling axis related genes, including Ifit3, Upp1, USP18, Nlrc5, were suppressed by BBR administration in vitro and in vivo. The proteins expression related to IRF8-IFN-γ signaling axis, including Ifit3, IRF1 and Ifit1 were downregulated by BBR intervention.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Gastrite Atrófica/tratamento farmacológico , Infecções por Helicobacter/tratamento farmacológico , Fatores Reguladores de Interferon/genética , Interferon gama/genética , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL9/antagonistas & inibidores , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Doença Crônica , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Gastrite Atrófica/genética , Gastrite Atrófica/imunologia , Gastrite Atrófica/microbiologia , Regulação da Expressão Gênica , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/imunologia , Interferon gama/antagonistas & inibidores , Interferon gama/imunologia , Interleucina-17/agonistas , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Proteínas NLR/antagonistas & inibidores , Proteínas NLR/genética , Proteínas NLR/imunologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/genética , Uridina Fosforilase/imunologia
3.
Int J Anal Chem ; 2019: 3497045, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885590

RESUMO

This study aimed to develop a selective, simple, and sensitive HPLC-MS/MS method for the simultaneous determination of schisandrin and promethazine (PMZ) with its metabolite in rat plasma, which was further used for a pharmacokinetic herb-drug interaction study. HPLC-MS/MS analyses were performed on an Agilent Technologies 1290 LC and a 6410 triple quadrupole mass spectrometer. The following parameters, the lower limit of quantification (LLOQ), calibration curve, accuracy, precision, stability, matrix effect, and recovery, were validated. The linear range of the developed method for PMZ, its metabolite promethazine sulfoxide (PMZSO), and schisandrin in rat plasma was 0.5-200 ng/mL (R 2 > 0.995), with an LLOQ of 0.5 ng/mL, which completely met the determination requirements of biosamples. The intra- and interday precision (RSD, %) was below 13.31% (below 16.67% for the LLOQ) in various plasma, whose accuracy (bias, %) was from -8.52% to 11.40%, which were both within an acceptable range. This method was successfully applied to a pharmacokinetic herb-drug interaction study after oral administration of PMZ with or without S. chinensis water extract. The results demonstrated that coadministration with the S. chinensis water extract might affect the pharmacokinetic behaviors of PMZ. In turn, when taken together with PMZ, the pharmacokinetic parameters of schisandrin, the main active component of S. chinensis, were also affected. The method established in the current study was selective, simple, sensitive, and widely available with good linearity, high accuracy and precision, and a stable sample preparation process. Moreover, this analytical method provides a significant approach for the investigation of herb-drug interaction between S. chinensis and PMZ. The potential pharmacokinetic herb-drug interaction of PMZ- and schisandrin-containing preparations should be noted.

4.
Front Pharmacol ; 10: 1135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680945

RESUMO

Backgrounds: Salsolinol (SAL), a plant-based isoquinoline alkaloid, was initially isolated from Aconiti Lateralis Radix Praeparata (ALRP) and identified as the active cardiotonic component of ALRP. This study was aimed to explore the therapeutic effect and mechanism by which SAL attenuates doxorubicin (DOX)-induced chronic heart failure (CHF) in rats and improves mitochondrial function in H9c2 cardiomyocytes. Methods: Rats were intraperitoneally injected with DOX to establish CHF model. Therapeutic effects of SAL on hemodynamic parameters, serum indices, and the histopathology of the heart were analyzed in vivo. Moreover, H9c2 cardiomyocytes were pretreated with SAL for 2 h before DOX treatment in all procedures in vitro. Cell viability, cardiomyocyte morphology, proliferation, and mitochondrial function were detected by a high-content screening (HCS) assay. In addition, a Seahorse Extracellular Flux (XFp) analyzer was used to evaluate the cell energy respiratory and energy metabolism function. To further investigate the potential mechanism of SAL, relative mRNA and protein expression of key enzymes in the tricarboxylic acid cycle in vivo and mitochondrial calcium uniporter (MCU) signaling pathway-related molecules in vitro were detected. Results: The present data demonstrated the pharmacological effect of SAL on DOX-induced CHF, which was through ameliorating heart function, downregulating serum levels of myocardial injury markers, alleviating histological injury to the heart, increasing the relative mRNA expression levels of key enzymes downstream of the tricarboxylic acid cycle in vivo, and thus enhancing myocardial energy metabolism. In addition, SAL had effects on increasing cell viability, ameliorating DOX-induced mitochondrial dysfunction, and increasing mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in H9c2 cardiomyocyte. Moreover, we found that SAL might have an effect on improving mitochondrial respiratory function and energy metabolism via inhibiting excessive activation of MCU pathway in H9c2 cells. However, the protective effect could be ameliorated by ruthenium red (an MCU inhibitor) and abrogated by spermine (an MCU activator) in vitro. Conclusion: The therapeutic effects of SAL on CHF are possibly related to ameliorating cardiomyocyte function resulting in promotion of mitochondrial respiratory and energy metabolism. Furthermore, the potential mechanism might be related to downregulating MCU pathway. These findings may provide a potential therapy for CHF.

5.
Chin Med ; 14: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467589

RESUMO

BACKGROUND: Astragali Radix (AR) is widely-used for improving liver fibrosis, but, the mechanism of action has not been systematically explained. This study aims to investigate the mechanism of AR intervention in liver fibrosis based on comprehensive metabolomics combined with network pharmacology approach. MATERIALS AND METHODS: UPLC-Q-TOF/MS based metabolomics technique was used to explore the specific metabolites and possible pathways of AR affecting the pathological process of liver fibrosis. Network pharmacology analysis was introduced to explore the key targets of AR regarding the mechanisms on liver fibrosis. RESULTS: AR significantly reduced the levels of ALT, AST and AKP in serum, and improved pathological characteristics. Metabolomics analysis showed that the therapeutic effect of AR was mainly related to the regulation of nine metabolites, including sphingosine, 6-keto-prostaglandin F1a, LysoPC (O-18:0), 3-dehydrosphinganine, 5,6-epoxy-8,11,14-eicosatrienoic acid, leukotriene C4, taurochenodesoxycholic acid, LysoPC (18:1 (9Z)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine. Pathway analysis indicated that the treatment of AR on liver fibrosis was related to arachidonic acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism and primary bile acid biosynthesis. Validation of the key targets by network pharmacology analysis of potential metabolic markers showed that AR significantly down-regulated the expression of CYP1B1 and up-regulated the expression of CYP1A2 and PCYT1A. CONCLUSION: Metabolomics combined with network pharmacology was used for the first time to clarify that the treatment of AR on liver fibrosis, which is related to the regulation of arachidonic acid metabolism and ether lipid metabolism by modulating the expression of CYP1A2, CYP1B1 and PCYT1A. And the integrated approach can provide new strategies and ideas for the study of molecular mechanisms of traditional Chinese medicines in the treatment of liver fibrosis.

6.
AMB Express ; 9(1): 101, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297618

RESUMO

Antibiotics abuse has caused increased bacterial resistance, which severely limits the application of antibiotics to the treatment of bacterial infections. Therefore, it is urgent to develop new antibacterial drugs through other sources. Dracontomelon dao (Blanco) Merr. & Rolfe (Ren Mianzi in Chinese) is a traditional medicinal material derived from Anacardiaceae with a long history of treating various infectious diseases, such as decubitus and skin ulcers. Recent research has indicated that different extracts from the leaves of D. dao, especially the ethyl acetate (EtOAc) fraction containing flavonoids and phenolic acids, exhibit potent antibacterial activities. In this research, the combined anti-drug-resistant bacterial activities of these active ingredients were investigated. Six samples (S1-S6) were obtained from the EtOAc fraction of D. dao leaves. Microcalorimetric measurements and principal component analysis were performed on the in vitro samples. The results showed that all six samples had notable antibacterial activities. Specifically, sample S6 exhibited a prominent antibacterial effect, with an IC50 value of 84.3 µg mL-1, which was significantly lower than that of other samples. The relative contents of main flavonoids and phenolic acids in S6 sample were confirmed by UPLC/Q-TOF-MS. In conclusion, sample S6 from the EtOAc fraction of D. dao leaves could be used as a potential antimicrobial resource in the treatment of infectious diseases. This work provides an insight into the effect of traditional Chinese medicine on drug-resistant bacteria. Moreover, the purification and characterization of the chemical compounds from the sample S6 deserve further analysis.

8.
Mol Genet Genomics ; 294(5): 1159-1171, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31053932

RESUMO

Li-Ru-Kang (LRK) has been commonly used in the treatment of hyperplasia of mammary gland (HMG) as a cipher prescription and achieved obvious therapeutic effects. However, the bioactive compounds and underlying pharmacological mechanisms remain unclear. This study aims to decipher the bioactive compounds and potential action mechanisms of LRK in the treatment of HMG using an integrated pharmacology approach. The ingredients of LRK and the corresponding drug targets were retrieved through drug target databases and were used to construct the "compound-target-disease" network and function-pathway network. Ultimately, 89 compounds and 2150 drug targets were collected. Gene ontology enrichment analysis revealed that mammary gland alveolus development and mammary gland lobule development were the key biological processes and were regulated simultaneously by three direct targets, including androgen receptor (AR), estrogen receptor (ER) and cyclin-D1. Moreover, 14 compounds of LRK were directly involved in the regulation of the three aforementioned targets. KEGG pathway enrichment analysis found that five signaling pathways and seven direct targets were closely related with HMG treatment by LRK. The results of animal experiments showed that LRK significantly improved the histopathological status of HMG in rats. Additionally, LRK markedly regulated the protein expressions of AR, cyclin-D1, MMP2, MMP3 and MMP9. But interestingly, the effect of LRK on ER was not obvious. This study demonstrated that LRK exerted its therapeutic efficacy based on multi-components, multi-targets and multi-pathways. This research confirms the advantages of network pharmacology analyses and the necessity for experimental verification.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hiperplasia/tratamento farmacológico , Glândulas Mamárias Animais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Feminino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
J Ethnopharmacol ; 238: 111838, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30930257

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sancao granule (SCG) is a traditional Chinese herb formula, which has been used for autoimmune liver disease for decades. Previous study demonstrated that there was an exactly therapeutic effect of SCG on autoimmune hepatitis (AIH) by improving liver function and alleviating the clinical symptoms. However, studies of the mechanism by which SCG alleviates Con A-induced liver injury (CILI) should be complemented. MATERIALS AND METHODS: An ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS)-based metabolomics approach combined with principle component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) were integrated applied to obtain metabolites for clarifying mechanisms of disease. RESULTS: In accordance with previously study, the present study demonstrated that SCG could obviously improve the liver injury in mouse induced by Con A via downregulating serum biochemical indexes, alleviating the histological damage and inhibiting the neutrophil infiltration in liver tissues. Different expression of 9 metabolites related to 8 pathways, including fatty acid biosynthesis, arachidonic acid metabolisms, linoleic acid metabolisms, sphingolipid metabolisms, fatty acid elongation in mitochondria, glycerophospholipid metabolism, fatty acid metabolism, pyrimidine metabolism were demonstrated responsible for the efficacy of SCG in treating CILI. CONCLUSION: In sum up, SCG has been indicated favorable therapeutic effect on Con A induced liver injury. And metabolomics could be a promising approach, which provide insights into mechanisms of SCG in treating CILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A , Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Substâncias Protetoras/farmacologia
10.
J Ethnopharmacol ; 238: 111880, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31004728

RESUMO

BACKGROUND: The combined use of Aconiti Lateralis Radix Praeparata (ALRP) and Zingiberis Rhizoma (ZR) are classic compatibilities in China for the treatment of cardiovascular diseases such as increasing myocardial contractility, anti-arrhythmia, reducing myocardial oxygen consumption, and dilating organ blood vessels, etc, thereby exerting anti-heart failure (HF) effects in traditional Chinese herbal medicine. However, comprehensive approaches for understanding the therapeutic effects and mechanisms underlying chronic heart failure (CHF) from the perspective of energy metabolism have not been pursued. AIM: This research was aimed to investigate the effectiveness and potential mechanism of ALRP combined with ZR (1:1) on doxorubicin (DOX)-induced CHF in rats based on an integrated approach that combines network pharmacology analyses and molecular biology. MATERIAL AND METHODS: CHF model was established by the intraperitoneal injection of DOX. ALRP and ZR were intragastrically administrated for three weeks. The detection indices including hemodynamic measurements, myocardial injury marker, and myocardial pathological changes were measured. Network pharmacology analysis was used to illustrate the pathways and network of ALRP and ZR against HF. Mitochondrial energy metabolism pathway associated gene and protein levels of PPARα, PGC-1α and Sirt3 in myocardial tissue were detected by real-time PCR and western blotting, respectively. RESULTS: The results indicated that ALRP-ZR herbal couple significantly improved the left ventricular function and cardiac enzyme activities in comparison with their single use. Network pharmacology analysis results showed that the pharmacological mechanisms of ALRP-ZR may be related to PPAR energy metabolism pathway. Besides, the outcomes of western-blot and real-time PCR analysis showed that ALRP-ZR significantly upregulates the protein and gene level of PPARα, PGC-1α, and Sirt3. CONCLUSIONS: Network pharmacology analysis would be an effective network analyze workflow which was feasible for evaluating the pharmacological effect of a multi-drug complex system. The Chinese herbal couple ALRP-ZR had a better therapeutic effect than their single-use against DOX-induced CHF, which may be related to enhancing left ventricular function by activating the PPARα/PGC-1α/Sirt3 pathway.


Assuntos
Aconitum/química , Doxorrubicina/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Rizoma/química , Zingiberaceae/química , Animais , Biomarcadores , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/prevenção & controle , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Sirtuínas/genética , Sirtuínas/metabolismo , Inibidores da Topoisomerase II/toxicidade
11.
Biomed Pharmacother ; 115: 108881, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028997

RESUMO

Higenamine (HG) is a well-known selective activator of beta2-adrenergic receptor (ß2-AR) with a positive inotropic effect. The present study showed that HG combined with [6]-gingerol (HG/[6]-GR) protects H9c2 cells from doxorubicin (DOX)-induced mitochondrial energy metabolism disorder and respiratory dysfunction. H9c2 cells were pretreated with HG/[6]-GR for 2 h before DOX treatment in all procedures. Cell viability was quantified by a cell counting kit­8 assay. Cardiomyocyte morphology, proliferation, and mitochondrial function were detected by a high content screening (HCS) assay. Cell mitochondrial stress was measured by a Seahorse XFp analyzer. To further investigate the protective mechanism of HG/[6]-GR, mRNA and protein expression levels of PPARα/PGC-1α/Sirt3 pathway-related molecules were detected. The present data demonstrated that protective effects of HG/[6]-GR combination were presented in mitochondria, which increased cell viability, ameliorated DOX-induced mitochondrial dysfunction, increased mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Most importantly, the protective effects were abrogated by GW6471 (a PPARα inhibitor) and ameliorated by Wy14643 (a PPARα agonist). Moreover, the combined use of HG and [6]-GR exerted more profound protective effects than either drug as a single agent. In conclusion, the results suggested that HG/[6]-GR ameliorates DOX-induced mitochondrial energy metabolism disorder and respiratory function impairment in H9c2 cells, and it indicated that the protective mechanism may be related to upregulation of the PPARα/PGC-1α/Sirt3 pathway, which promotes mitochondrial energy metabolism and protects against heart failure.


Assuntos
Alcaloides/farmacologia , Catecóis/farmacologia , Doxorrubicina/toxicidade , Álcoois Graxos/farmacologia , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Agonistas Adrenérgicos beta/administração & dosagem , Agonistas Adrenérgicos beta/farmacologia , Alcaloides/administração & dosagem , Animais , Antibióticos Antineoplásicos/toxicidade , Catecóis/administração & dosagem , Linhagem Celular , Sobrevivência Celular , Metabolismo Energético/efeitos dos fármacos , Álcoois Graxos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Sirtuínas/genética , Sirtuínas/metabolismo , Tetra-Hidroisoquinolinas/administração & dosagem , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA