Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Epilepsy Res ; 203: 107365, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38677001

RESUMO

Epilepsy is a chronic neurological disorder characterized by episodic dysfunction of central nervous system. The most basic mechanism of epilepsy falls to the imbalance between excitation and inhibition. In adults, GABAA receptor (GABAAR) is the main inhibitory receptor to prevent neurons from developing hyperexcitability, while its inhibition relies on the low intracellular chloride anion concentration ([Cl-]i). Neuronal-specific electroneutral K+-Cl- cotransporter (KCC2) can mediate chloride efflux to lower [Cl-]i for GABAAR mediated inhibition. Our previous study has revealed that the coordinated downregulation of KCC2 and GABAAR participates in epilepsy. According to a high-throughout screen for compounds that reduce [Cl-]i, CLP290 turns out to be a specific KCC2 functional modulator. In current study, we first confirmed that CLP290 could dose-dependently suppress convulsant-induced seizures in mice in vivo as well as the epileptiform burst activities in cultured hippocampal neurons in vitro. Then, we discovered that CLP290 functioned through preventing the downregulation of the KCC2 phosphorylation at Ser940 and hence the KCC2 membrane expression during convulsant stimulation, and consequently restored the GABA inhibition. In addition, while CLP290 was given in early epileptogenesis period, it also effectively decreased the spontaneous recurrent seizures. Generally, our current results demonstrated that CLP290, as a specific KCC2 modulator by enhancing KCC2 function, not only inhibits the occurrence of the ictal seizures, but also suppresses the epileptogenic process. Therefore, we believe KCC2 may be a suitable target for future anti-epileptic drug development.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38648292

RESUMO

Given the escalating global crisis in feed protein availability, Jatropha curcas L. cake has attracted significant interest as a viable alternative protein source in animal feed. This experiment was conducted to investigate the effects of fermented Jatropha curcas L. cake (FJCC) as a protein feed in the diet of pigs. A total of 96 growing pigs with an average weight of 27.60 ± 1.59 kg were divided into three dietary groups with varying FJCC inclusion levels (0, 2.5, and 5%) for a 28 d trial. Results showed that the diet with 5% FJCC (FJCC5) demonstrated significant improvements in average daily gain (p = 0.009), feed-to-gain ratio (p = 0.036), nutrient digestibility, and intestinal morphology. Furthermore, the FJCC5 diet resulted in a decrease in pH values in different gut sections (jejunum p = 0.045, cecum p = 0.001, colon p = 0.012), and favorably altered the profile of short-chain fatty acids (SCFAs) with increased butyric acid content (p = 0.005) and total SCFAs (p = 0.019). Additionally, this diet notably decreased IL-6 levels in the jejunum (p = 0.008) and colon (=0.047), significantly reduced IL-1 levels in the hypothalamus (p < 0.001), and lowered IL-1, IL-6, and IL-10 levels in plasma (p < 0.05). Microbiota and metabolite profile analysis revealed an elevated abundance of beneficial microbes (p < 0.05) and key metabolites such as 4-aminobutyric acid (GABA) (p = 0.003) and serotonin (5-HT) (p = 0.022), linked to neuroactive ligand-receptor interaction. Moreover, FJCC5 significantly boosted circulating neurotransmitter levels of 5-HT (p = 0.006) and GABA (p = 0.002) in plasma and hypothalamus, with corresponding increases in precursor amino acids (p < 0.05). These findings suggest that FJCC, particularly at a 5% inclusion rate, can be an effective substitute for traditional protein sources like soybean meal, offering benefits beyond growth enhancement to gut health and potentially impacting the gut-brain axis. This research underscores FJCC's potential as a valuable component in sustainable animal nutrition strategies.

3.
Int J Biol Macromol ; 266(Pt 1): 130982, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522693

RESUMO

This work aimed to propose a rapid method to screen the bioactive peptides with anti-α-glucosidase activity instead of traditional multiple laborious purification and identification procedures. 242 peptides binding to α-glycosidase were quickly screened and identified by bio-affinity ultrafiltration combined with LC-MS/MS from the double enzymatic hydrolysate of black beans. Top three peptides with notable anti-α-glucosidase activity, NNNPFKF, RADLPGVK and FLKEAFGV were further rapidly screened and ranked by the three artificial intelligence tools (three-AI-tool) BIOPEP database, PeptideRanker and molecular docking from the 242 peptides. Their IC50 values were in order as 4.20 ± 0.11 mg/mL, 2.83 ± 0.03 mg/mL, 1.32 ± 0.09 mg/mL, which was opposite to AI ranking, for the hydrophobicity index of the peptides was not included in the screening criteria. According to the kinetics, FT-IR, CD and ITC analyses, the binding of the three peptides to α-glucosidase is a spontaneous and irreversible endothermic reaction that results from hydrogen bonds and hydrophobic interactions, which mainly changes the α-helix structure of α-glucosidase. The peptide-activity can be evaluated vividly by AFM in vitro. In vivo, the screened FLKEAFGV and RADLPGVK can lower blood sugar levels as effectively as acarbose, they are expected to be an alternative to synthetic drugs for the treatment of Type 2 diabetes.


Assuntos
Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Peptídeos , Espectrometria de Massas em Tandem , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Peptídeos/química , Peptídeos/farmacologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Cromatografia Líquida/métodos , Cinética , Ultrafiltração/métodos , Fabaceae/química , Espectrometria de Massa com Cromatografia Líquida
4.
J Ethnopharmacol ; 327: 118009, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447617

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY: To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS: The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS: Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS: These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.


Assuntos
Artemisia , Colestase , Microbioma Gastrointestinal , Icterícia , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fígado , Colestase/induzido quimicamente , Transdução de Sinais , Icterícia/metabolismo , Ácidos e Sais Biliares/metabolismo
5.
Poult Sci ; 103(5): 103610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489887

RESUMO

This study investigated the effect of Ethylenediamine dihydroiodide (EDDI) on growth performance, immune function and intestinal health of meat ducks challenged with Avian pathogenic Escherichia coli (APEC). A total of 360 one-day-old Cherry Valley ducks with similar body weight were randomly allocated to 6 treatments (6 floor cages, 10 birds/cage). A 3 × 2 factor design was used with 3 dietary iodine levels (0, 8, 16 mg/kg in the form EDDI and whether APEC was challenged or not at 7-day-old ducks. The feeding period lasted for 20 d. The results showed that the addition of EDDI reduced APEC-induced decrease of the 20-d weight loss of meat ducks (P < 0.05), and alleviated the inflammatory response of liver tissue induced by APEC challenge in meat ducks. In terms of immune function, EDDI supplementation reduced the immune organ index and increased the immune cell count of meat ducks, reduced the level of endotoxins in the serum of meat ducks (P < 0.05), as well as inhibited the expression levels of liver and spleen inflammatory factors and TLR signaling pathway related genes induced by APEC (P < 0.05). In terms of intestinal health, EDDI inhibited APEC-induced decreases in ZO-3 genes expression and increases in IL-1ß and TNF-α expression, increased relative abundance of beneficial bacteria in the cecum and content of metabolites. Pearson correlation analysis showed that there was a significant correlation between liver inflammatory factors and TLR4 signaling pathway genes, and there might be a significant correlation between intestinal microbial flora and other physiological indexes of meat ducks, which indicated that EDDI could reduce the damage to immune function and intestinal health caused by APEC challenge through regulating the structure of intestinal flora. Collectively, our findings suggest that the EDDI can promote growth performance, improve immune function and the intestinal barrier in APEC-challenged meat ducks, which may be related to the suppression of NF-κB signal.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Patos , Infecções por Escherichia coli , Escherichia coli , NF-kappa B , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Ração Animal/análise , NF-kappa B/metabolismo , Dieta/veterinária , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Suplementos Nutricionais/análise , Transdução de Sinais/efeitos dos fármacos , Distribuição Aleatória , Intestinos/efeitos dos fármacos , Relação Dose-Resposta a Droga
6.
Front Psychol ; 15: 1375294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515973

RESUMO

Objective: College students are currently grappling with severe mental health challenges, and research on artificial intelligence (AI) related to college students mental health, as a crucial catalyst for promoting psychological well-being, is rapidly advancing. Employing bibliometric methods, this study aim to analyze and discuss the research on AI in college student mental health. Methods: Publications pertaining to AI and college student mental health were retrieved from the Web of Science core database. The distribution of publications were analyzed to gage the predominant productivity. Data on countries, authors, journal, and keywords were analyzed using VOSViewer, exploring collaboration patterns, disciplinary composition, research hotspots and trends. Results: Spanning 2003 to 2023, the study encompassed 1722 publications, revealing notable insights: (1) a gradual rise in annual publications, reaching its zenith in 2022; (2) Journal of Affective Disorders and Psychiatry Research emerged were the most productive and influential sources in this field, with significant contributions from China, the United States, and their affiliated higher education institutions; (3) the primary mental health issues were depression and anxiety, with machine learning and AI having the widest range of applications; (4) an imperative for enhanced international and interdisciplinary collaboration; (5) research hotspots exploring factors influencing college student mental health and AI applications. Conclusion: This study provides a succinct yet comprehensive overview of this field, facilitating a nuanced understanding of prospective applications of AI in college student mental health. Professionals can leverage this research to discern the advantages, risks, and potential impacts of AI in this critical field.

7.
J Anim Sci Biotechnol ; 15(1): 41, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454493

RESUMO

BACKGROUND: The aim of this experiment was to investigate the effect of different levels of betaine (Bet) inclusion in the diet on the intestinal health of growing rabbits under summer heat. A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61 ± 38.59 g were randomly divided into 5 treatment groups: control group (basal diet) and Bet groups (basal diet + 0.75, 1.0, 1.5 or 2.0 g/kg Bet). The average daily temperature in the rabbitry during the experiment was 30.48 °C and the relative humidity was 69.44%. RESULTS: Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits (P > 0.05), but it increased ileal secretory immunoglobulin A content compared to the control under summer heat (P < 0.05). Addition of 0.75 g/kg Bet up-regulated jejunal IL-4, down-regulated ileal TNF-α expression (P < 0.05). The addition of 1.0 g/kg Bet increased the villi height (VH) in the jejunum (P < 0.05). Serum glucose levels were reduced, and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet (P < 0.05). When added at 2.0 g/kg, Bet reduced serum HSP70 content, increased jejunal VH, and up-regulated duodenal SLC7A6, SLC38A2, mTOR and 4EBP-2 expression (P < 0.05). Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6, SLC38A2, SLC36A1 and IL-4 expression (P < 0.05). CONCLUSIONS: Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway, improve the intestinal immune function, alleviate intestinal damage in growing rabbits caused by summer heat, and improve intestinal health.

8.
Anim Nutr ; 16: 363-375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362514

RESUMO

In the present study, the chronic heat stress (CHS) broiler model was developed to investigate the potential protection mechanism of organic selenium (selenomethionine, SeMet) on CHS-induced skeletal muscle growth retardation and poor meat quality. Four hundred Arbor Acres male broilers (680 ± 70 g, 21 d old) were grouped into 5 treatments with 8 replicates of 10 broilers per replicate. Broilers in the control group were raised in a thermoneutral environment (22 ± 2 °C) and fed with a basal diet. The other four treatments were exposed to hyperthermic conditions (33 ± 2 °C, 24 h in each day) and fed on the basal diet supplied with SeMet at 0.0, 0.2, 0.4, and 0.6 mg Se/kg, respectively, for 21 d. Results showed that CHS reduced (P < 0.05) the growth performance, decreased (P < 0.05) the breast muscle weight and impaired the meat quality of breast muscle in broilers. CHS induced protein metabolic disorder in breast muscle, which increased (P < 0.05) the expression of caspase 3, caspase 8, caspase 9 and ubiquitin proteasome system related genes, while decreased the protein expression of P-4EBP1. CHS also decreased the antioxidant capacity and induced mitochondrial stress and endoplasmic reticulum (ER) stress in breast muscle, which increased (P < 0.05) the ROS levels, decreased the concentration of ATP, increased the protein expression of HSP60 and CLPX, and increased (P < 0.05) the expression of ER stress biomarkers. Dietary SeMet supplementation linearly increased (P < 0.05) breast muscle Se concentration and exhibited protective effects via up-regulating the expression of the selenotranscriptome and several key selenoproteins, which increased (P < 0.05) body weight, improved meat quality, enhanced antioxidant capacity and mitigated mitochondrial stress and ER stress. What's more, SeMet suppressed protein degradation and improved protein biosynthesis though inhibiting the caspase and ubiquitin proteasome system and promoting the mTOR-4EBP1 pathway. In conclusion, dietary SeMet supplementation increases the expression of several key selenoproteins, alleviates mitochondrial dysfunction and ER stress, improves protein biosynthesis, suppresses protein degradation, thus increases the body weight and improves meat quality of broilers exposed to CHS.

9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290533

RESUMO

An experiment was conducted to determine the effects of betaine on growth performance and intestinal health in rabbits fed diets with different levels of digestible energy. During a 36-d experiment, a total of 144 healthy 35-d-old weaned New Zealand white rabbits with a similar initial body weight (771.05 ±â€…41.79 g) were randomly distributed to a 2 × 3 factorial arrangement. Experimental treatments consisted of two levels of digestible energy (normal: 10.20 and low: 9.60 MJ/kg) and three levels of betaine (0, 500, and 1,000 mg/kg). Results indicated that rabbits fed the diet with low digestible energy (LDE) had reduced body gain/feed intake on days 1 to 14 and 1 to 36 (P < 0.05), increased the apparent total tract digestibility (ATTD) of neutral detergent fiber, acid detergent fiber (ADF), and n-free extract, and decreased the ATTD of gross energy (GE), crude fiber, and organic matter (OM; P < 0.05). The LDE diet upregulated the gene abundance levels of duodenum junctional adhesion molecule-3 (JAM-3) and downregulated the ileum toll-like receptor 4, myeloid differentiation factor 88, and interleukin-6 (IL-6; P < 0.05). Activities of amylase, lipase, trypsin, and the immunoglobulin M content in the jejunum were decreased in the LDE treatment group (P < 0.05). Dietary betaine supplementation increased the ATTD of GE, dry matter (DM), ADF, and n-free extract by LDE (P < 0.05). The villus height, crypt depth, and goblet cell numbers were decreased, and the villus-crypt ratio was increased in the duodenum (P < 0.05). The gene abundance levels of duodenum IL-2 were downregulated, and the duodenum JAM-2 and JAM-3 were upregulated (P < 0.05). Furthermore, the addition of betaine to the LDE diet increased the ATTD of GE, DM, and OM in rabbits (P < 0.05). Gene abundance levels of ileum IL-6 and duodenum JAM-3 were upregulated (P < 0.05). In summary, LDE diets can reduce the activity of intestinal digestive enzymes and decrease the ATTD of nutrients. However, the addition of betaine to LDE diets improved the intestinal barrier structure and nutrient ATTD in rabbits, with better results when betaine was added at an additive level of 500 mg/kg.


Insufficient dietary energy can cause many negative effects on animal production and cause intestinal diseases, which are one of the main causes of morbidity and mortality in rabbits. Results of some experiments demonstrated that betaine has various physiological functions such as improving energy utilization and intestinal health. Therefore, the aim of this study was to evaluate the effects of betaine supplementation on growth performance, intestinal function, and health in rabbits fed diets with different levels of digestible energy. The results showed that the addition of betaine to a low-digestible energy diet improved the gut barrier structure and nutrient digestibility in rabbits.


Assuntos
Betaína , Detergentes , Coelhos , Animais , Betaína/farmacologia , Detergentes/farmacologia , Interleucina-6 , Digestão , Dieta/veterinária
10.
BMC Oral Health ; 24(1): 30, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184528

RESUMO

BACKGROUND: Adequate occlusal plane (OP) rotation through orthodontic therapy enables satisfying profile improvements for patients who are disturbed by their maxillomandibular imbalance but reluctant to surgery. The study aims to quantify profile improvements that OP rotation could produce in orthodontic treatment and whether the efficacy differs among skeletal types via machine learning. MATERIALS AND METHODS: Cephalometric radiographs of 903 patients were marked and analyzed by trained orthodontists with assistance of Uceph, a commercial software which use artificial intelligence to perform the cephalometrics analysis. Back-propagation artificial neural network (BP-ANN) models were then trained based on collected samples to fit the relationship among maxillomandibular structural indicators, SN-OP and P-A Face Height ratio (FHR), Facial Angle (FA). After corroborating the precision and reliability of the models by T-test and Bland-Altman analysis, simulation strategy and matrix computation were combined to predict the consequent changes of FHR, FA to OP rotation. Linear regression and statistical approaches were then applied for coefficient calculation and differences comparison. RESULTS: The regression scores calculating the similarity between predicted and true values reached 0.916 and 0.908 in FHR, FA models respectively, and almost all pairs were in 95% CI of Bland-Altman analysis, confirming the effectiveness of our models. Matrix simulation was used to ascertain the efficacy of OP control in aesthetic improvements. Intriguingly, though FHR change rate appeared to be constant across groups, in FA models, hypodivergent group displayed more sensitive changes to SN-OP than normodivergent, hypodivergent group, and Class III group significantly showed larger changes than Class I and II. CONCLUSIONS: Rotation of OP could yield differently to facial aesthetic improvements as more efficient in hypodivergent groups vertically and Class III groups sagittally.


Assuntos
Inteligência Artificial , Oclusão Dentária , Humanos , Reprodutibilidade dos Testes , Rotação , Estética Dentária , Aprendizado de Máquina
11.
Int J Cardiol ; 400: 131811, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278489

RESUMO

BACKGROUND: Resting heart rate (RHR) during hospitalization has been shown to be associated with adverse outcomes in patients with myocardial infarction (MI). This study aimed to evaluate the long-term prognostic effect of RHR during the stable phase after MI in post-MI patients. METHODS: Patients who had prior or new-onset MI and RHR measurements during the stable period after MI between 2006 and 2018 in the community-based Kailuan Study were enrolled. RHR was divided into four groups based on quartiles. Cox regression analysis was used to analyze the association of RHR with primary composite outcome of all-cause death, hospitalization for heart failure (HF), stroke, and recurrent MI and its components. RESULTS: A total of 4447 post-MI patients were included. During a median follow-up of 7.5 years, 1813 patients (40.8%) developed primary outcomes. Compared to RHR ≤67 bpm, patients with 72 < RHR ≤80 bpm and RHR >80 bpm had increased risks of primary outcome, with adjusted hazard ratios (95% confidence intervals) of 1.23 (1.08-1.40) and 1.35 (1.18-1.55), respectively. The risk of primary outcome increased by 12% (1.07-1.17) for each 10-bpm increase in RHR. Similar results were observed in all-cause death and hospitalization for HF. Restricted cubic splines revealed a linear relationship between RHR and primary outcome, all-cause death, and hospitalization for HF (P for nonlinearity >0.05). CONCLUSIONS: RHR during the stable phase after MI was an independent predictor for primary outcome and all-cause death in post-MI patients, and RHR >72 bpm was associated with increased risk for primary outcome and all-cause death.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Estudos de Coortes , Estudos Prospectivos , Frequência Cardíaca/fisiologia , Infarto do Miocárdio/diagnóstico , Prognóstico , Insuficiência Cardíaca/diagnóstico , Síndrome , Fatores de Risco
12.
J Anim Sci Biotechnol ; 15(1): 5, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243258

RESUMO

BACKGROUND: Zinc glycine chelate (Zn-Gly) has anti-inflammation and growth-promoting properties; however, the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown. Three-hundred 1-day-old ducks were divided into 5 groups (6 replicates and 10 ducks per replicate) in a completely randomized design: the control and dextran sulfate sodium (DSS) groups were fed a corn-soybean meal basal diet, and experimental groups received supplements of 70, 120 or 170 mg/kg Zn in form of Zn-Gly. The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15-21, and the control group received normal saline. The experiment lasted 21 d. RESULTS: Compared with DSS group, 70, 120 and 170 mg/kg Zn significantly increased body weight (BW), villus height and the ratio of villus to crypt, and significantly decreased the crypt depth of jejunum at 21 d. The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining. Compared with control, the content of intestinal permeability marker D-lactic acid (D-LA) and fluxes of fluorescein isothiocyanate (FITC-D) in plasma of DSS group significantly increased, and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes. Compared with control, contents of plasma, jejunum endotoxin and jejunum pro-inflammatory factors IL-1ß, IL-6 and TNF-α were significantly increased in DSS group, and were significantly decreased by 170 mg/kg Zn supplementation. Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10, IL-22 and sIgA and IgG in jejunum. Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum, and decreased gene and protein expression of CLDN-2 compared with DSS group. The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA. Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-α expression levels and TNF-α protein expression in jejunum. Additionally, Zn significantly reduced the gene and protein expression of TLR4, MYD88 and NF-κB p65. CONCLUSIONS: Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology, barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.

13.
J Sci Food Agric ; 104(5): 2772-2782, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38010266

RESUMO

BACKGROUND: Distillers dried grains with solubles (DDGS) are rich in nutrition, and they are potential protein feed raw material. However, the existence of cellulose, hemicellulose and lignin hinders animals' digestion and absorption of DDGS. Making full use of unconventional feed resources such as DDGS can alleviate the shortage of feed resources to a certain extent. This research investigated the effects of twin-screw extrusion on the macromolecular composition, physical and chemical properties, surface structure and in vitro protein digestibility (IVPD) of DDGS. RESULTS: The findings showed that extrusion puffing significantly increased the protein solubility, bulk density, water holding capacity, and swelling capacity, while significantly decreased hemicellulose and crude protein content, particle size and zeta potential of DDGS. The structure damage of DDGS induced by the extrusion was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FITR) spectroscopy and X-ray diffraction (XRD) analysis. Interestingly, no random coil was observed in the analysis of the secondary structure, and extrusion promoted the transformation of α-helix and ß-turn to ß-sheet, which led to significant increases in protein solubility and IVPD of DDGS (P < 0.05). Additionally, correlation analysis revealed that IVPD and PS had a positive relationship. CONCLUSION: Extrusion puffing was an ideal pretreatment method for DDGS modification to improve in vitro protein digestibility. © 2023 Society of Chemical Industry.


Assuntos
Digestão , Zea mays , Animais , Zea mays/química , Ração Animal/análise , Dieta , Estrutura Secundária de Proteína , Fenômenos Fisiológicos da Nutrição Animal , Grão Comestível/química
14.
Front Microbiol ; 14: 1277847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053556

RESUMO

Sulfur-oxidizing bacteria play a crucial role in various processes, including mine bioleaching, biodesulfurization, and treatment of sulfur-containing wastewater. Nevertheless, the pathway involved in sulfur oxidation is highly intricate, making it complete comprehension a formidable and protracted undertaking. The mechanisms of sulfur oxidation within the Acidithiobacillus genus, along with the process of energy production, remain areas that necessitate further research and elucidation. In this study, a novel strain of sulfur-oxidizing bacterium, Acidithiobacillus Ameehan, was isolated. Several physiological characteristics of the strain Ameehan were verified and its complete genome sequence was presented in the study. Besides, the first genome-scale metabolic network model (AMEE_WP1377) was reconstructed for Acidithiobacillus Ameehan to gain a comprehensive understanding of the metabolic capacity of the strain.The characteristics of Acidithiobacillus Ameehan included morphological size and an optimal growth temperature range of 37-45°C, as well as an optimal growth pH range of pH 2.0-8.0. The microbe was found to be capable of growth when sulfur and K2O6S4 were supplied as the energy source and electron donor for CO2 fixation. Conversely, it could not utilize Na2S2O3, FeS2, and FeSO4·7H2O as the energy source or electron donor for CO2 fixation, nor could it grow using glucose or yeast extract as a carbon source. Genome annotation revealed that the strain Ameehan possessed a series of sulfur oxidizing genes that enabled it to oxidize elemental sulfur or various reduced inorganic sulfur compounds (RISCs). In addition, the bacterium also possessed carbon fixing genes involved in the incomplete Calvin-Benson-Bassham (CBB) cycle. However, the bacterium lacked the ability to oxidize iron and fix nitrogen. By implementing a constraint-based flux analysis to predict cellular growth in the presence of 71 carbon sources, 88.7% agreement with experimental Biolog data was observed. Five sulfur oxidation pathways were discovered through model simulations. The optimal sulfur oxidation pathway had the highest ATP production rate of 14.81 mmol/gDW/h, NADH/NADPH production rate of 5.76 mmol/gDW/h, consumed 1.575 mmol/gDW/h of CO2, and 1.5 mmol/gDW/h of sulfur. Our findings provide a comprehensive outlook on the most effective cellular metabolic pathways implicated in sulfur oxidation within Acidithiobacillus Ameehan. It suggests that the OMP (outer-membrane proteins) and SQR enzymes (sulfide: quinone oxidoreductase) have a significant impact on the energy production efficiency of sulfur oxidation, which could have potential biotechnological applications.

15.
Front Plant Sci ; 14: 1281348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023876

RESUMO

The systematical characterization and understanding of the metabolic behaviors are the basis of the efficient plant metabolic engineering and synthetic biology. Genome-scale metabolic networks (GSMNs) are indispensable tools for the comprehensive characterization of overall metabolic profile. Here we first constructed a GSMN of tobacco, which is one of the most widely used plant chassis, and then combined the tobacco GSMN and multiomics analysis to systematically elucidate the impact of in-vitro cultivation on the tobacco metabolic network. In-vitro cultivation is a widely used technique for plant cultivation, not only in the field of basic research but also for the rapid propagation of valuable horticultural and pharmaceutical plants. However, the systemic effects of in-vitro cultivation on overall plant metabolism could easily be overlooked and are still poorly understood. We found that in-vitro tobacco showed slower growth, less biomass and suppressed photosynthesis than soil-grown tobacco. Many changes of metabolites and metabolic pathways between in-vitro and soil-grown tobacco plants were identified, which notably revealed a significant increase of the amino acids content under in-vitro condition. The in silico investigation showed that in-vitro tobacco downregulated photosynthesis and primary carbon metabolism, while significantly upregulated the GS/GOGAT cycle, as well as producing more energy and less NADH/NADPH to acclimate in-vitro growth demands. Altogether, the combination of experimental and in silico analyses offers an unprecedented view of tobacco metabolism, with valuable insights into the impact of in-vitro cultivation, enabling more efficient utilization of in-vitro techniques for plant propagation and metabolic engineering.

16.
Biol Trace Elem Res ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910261

RESUMO

Oxidative stress (OS) is widespread in animal husbandry, which causes edema in immune organs and suppresses immune function of animals. Selenium (Se) is an essential trace element involved in immune regulation and improves animals' immunity. In present study, growing and finishing pigs were used to determine the protective effects of the new organic Se (hydroxy selenomethionine, OH-SeMet) on dietary oxidative stress (DOS) induced inflammatory responses, and the corresponding response of selenotranscriptome in spleen and thymus. Forty castrated male pigs (25.0 ± 3.0 kg) were randomly grouped into 5 dietary treatments (n = 8) and fed on basal diet (formulated with normal corn and normal oils) or oxidized diet (formulated with aged corn and oxidized oils) supplied with 0.0, 0.3, 0.6, or 0.9 mg Se/kg OH-SeMet, after 16 weeks, the corresponding indicators were determined. Results showed that DOS moderately increased the spleen and thymus index, decreased the antioxidant capacity of serum, spleen and thymus, and increased the concentration of serum inflammatory cytokines (IL-6 and TNF-α). The inflammatory response in spleen and thymus under DOS were discrepancies, DOS increased the expression of inflammation-related gene (IFN-ß and TNF-α) in thymus, while exhibited no impact on that of the spleen. Dietary OH-SeMet supplementation exhibited protective effects, which decreased the spleen and thymus index, improved the antioxidant capacity of serum, spleen and thymus, and decreased the serum IL-1ß and IL-6 levels. Se supplementation exhibited limited impact on the inflammation-related genes in spleen, except decreased the mRNA expression of IL-8. On the contrary, Se supplementation showed more impact on that of the thymus, which decreased the mRNA expression of IL-8 and TNF-α, increased the expression of IFN-ß, IL-6, IL-10, and MCP1. In addition, selenotranscriptome responsive to dietary Se levels in spleen and thymus were discrepancies. Se supplementation increased the mRNA expression of  the selenotranscriptome in thymus, while exhibited limited impact on that of in spleen. In conclusion, dietary OH-SeMet supplementation mitigates the DOS-induced immunological stress by increasing the antioxidant capacity and altering the expression of inflammation-related genes and selenotranscriptome in immune organs, and these response in spleen and thymus were discrepancies.

17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37931145

RESUMO

In recent years, more frequent and prolonged periods of high ambient temperature in summer compromised poultry production worldwide. This study was conducted to investigate the effects of compound bioengineering protein (CBP) on the growth performance and intestinal health of broilers under high ambient temperatures. A total of 400 one-day-old Arbor Acres birds were randomly distributed into five treatment groups: control group (CON) with basal diet, or a basal diet supplemented with CBP 250, 500, 750, and 1,000 mg/kg, respectively. The trial lasted 42 d, all birds were raised at normal ambient temperature for the first 21 d and then subjected to the artificial hyperthermal condition with the temperature at 32 ±â€…2 °C and relative humidity at 60 ±â€…5% during 22 to 42 d. Dietary CBP supplementation improved the growth performance and serum antioxidant capacity (total antioxidant capacity and total superoxide dismutase), and decreased serum cortisol, aminotransferase, and alkaline phosphatase of broilers. Dietary CBP inclusion enhanced intestinal barrier function by promoting intestinal morphology and reducing intestinal permeability (diamine oxidase), increased the intestinal antioxidant capacity by elevating glutathione peroxidase activity in the duodenum, reducing malondialdehyde content in the jejunum. Dietary CBP supplementation also alleviated intestinal inflammation by decreasing interleukin (IL)-6 content in the jejunum and ileum, promoting IL-10 levels in the ileum, down-regulating the mRNA abundance of intestinal inflammatory-related genes interferon-gamma (IFN-γ) in the duodenum and up-regulating IL-10 in the jejunum. Additionally, CBP increased the population of total bacteria and Lactobacillus in cecal chyme. Collectively, dietary CBP inclusion exerts beneficial effects on the broilers, which are reflected by enhancing antioxidant capacity, promoting intestinal barrier function, ameliorating intestinal immune response, and regulating intestinal bacteria, thus improving the growth performance of broilers under high-temperature conditions. In general, 750 mg/kg CBP supplementation is more effective.


Extreme high ambient temperature in summer occurs frequently around the world, which causes severe economic losses in the broiler industry, and impairs food safety. Improving the high-temperature resistance of broilers is beneficial to the sustainable development of the broiler industry. Dietary supplementation of anti-stress additives is an effective way to prevent high-temperature stress in broilers. Antimicrobial peptides are excellent anti-stress additives that exhibit multiple biological functions, such as against microbial infection, improving antioxidant capacity and immune function, and perfecting the intestinal health of broilers. In the present study, we added the compound bioengineering protein (CBP) (two bioengineering proteins containing functional fragments of antimicrobial peptides) in diets to investigate the potential protective effects of CBP for broilers under high temperatures. Our present results indicate that dietary CBP supplementation enhances the growth performance of broilers exposed to high temperatures. This improvement is attributed to the increased antioxidant capacity, improved intestinal barrier function, ameliorated intestinal immune function, and improved intestinal bacteria. These results provide a theoretical foundation for CBP utilization in diets to ameliorate growth performance and intestinal health of broilers under high temperatures.


Assuntos
Antioxidantes , Galinhas , Animais , Galinhas/fisiologia , Antioxidantes/metabolismo , Interleucina-10 , Temperatura , Suplementos Nutricionais/análise , Dieta/veterinária , Bioengenharia , Ração Animal/análise
18.
Redox Biol ; 67: 102912, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797371

RESUMO

With the increasing of global mean surface air temperature, heat stress (HS) induced by extreme high temperature has become a key factor restricting the poultry industry. Liver is the main metabolic organ of broilers, HS induces liver damage and metabolic disorders, which impairs the health of broilers and affects food safety. As an essential trace element for animals, selenium (Se) involves in the formation of antioxidant system, and its biological functions are generally mediated by selenoproteins. However, the mechanism of Se against HS induced liver damage and metabolic disorders in broilers is inadequate. Therefore, we developed the chronic heat stress (CHS) broiler model and investigated the potential protection mechanism of organic Se (selenomethionine, SeMet) on CHS induced liver damage and metabolic disorders. In present study, CHS caused liver oxidative damage, and induced hepatic lipid accumulation and glycogen infiltration of broilers, which are accompanied by mitochondrial dysfunction, abnormal mitochondrial tricarboxylic acid (TCA) cycle and endoplasmic reticulum (ER) stress. Dietary SeMet supplementation increased the hepatic Se concentration and exhibited protective effects via promoting the expression of selenotranscriptome and several key selenoproteins (GPX4, TXNRD2, SELENOK, SELENOM, SELENOS, SELENOT, GPX1, DIO1, SELENOH, SELENOU and SELENOW). These key selenoproteins synergistically improved the antioxidant capacity, and mitigated the mitochondrial dysfunction, abnormal mitochondrial TCA cycle and ER stress, thus recovered the hepatic triglyceride and glycogen concentration. What's more, SeMet supplementation suppressed lipid and glycogen biosynthesis and promoted lipid and glycogen breakdown in liver of broilers exposed to CHS though regulating the AMPK signals. Overall, our present study reveals a potential mechanism that Se alleviates environment HS induced liver damage and glycogen and lipid metabolism disorders in broilers, which provides a preventive and/or treatment measure for environment HS-dependent hepatic metabolic disorders in poultry industry.


Assuntos
Doenças Metabólicas , Selênio , Animais , Selenometionina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Fígado/metabolismo , Selenoproteínas/metabolismo , Resposta ao Choque Térmico , Lipídeos/farmacologia , Homeostase , Retículo Endoplasmático/metabolismo , Doenças Metabólicas/metabolismo
19.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895123

RESUMO

As global warming continues, the phenomenon of heat stress (HS) in broilers occurs frequently. The alleviating effect of different selenium (Se) sources on HS-induced hepatic lipid metabolism disorders in broilers remains unclear. This study compared the protective effects of four Se sources (sodium selenite; selenium yeast; selenomethionine; nano-Se) on HS-induced hepatic lipid metabolism disorder and the corresponding response of selenotranscriptome in the liver of broilers. The results showed that HS-induced liver injury and hepatic lipid metabolism disorder, which were reflected in the increased activity of serum alanine aminotransferase (ALT), the increased concentration of triacylglycerol (TG) and total cholesterol (TC), the increased activity of acetyl-CoA carboxylase (ACC), diacylglycerol O-acyltransferase (DGAT) and fatty acid synthase (FAS), and the decreased activity of hepatic lipase (HL) in the liver. The hepatic lipid metabolism disorder was accompanied by the increased mRNA expression of lipid synthesis related-genes, the decreased expression of lipidolysis-related genes, and the increased expression of endoplasmic reticulum (ER) stress biomarkers (PERK, IRE1, ATF6, GRP78). The dietary supplementation of four Se sources exhibited similar protective effects. Four Se sources increased liver Se concentration and promoted the expression of selenotranscriptome and several key selenoproteins, enhanced liver antioxidant capacity and alleviated HS-induced ER stress, and thus resisted the hepatic lipid metabolism disorders of broilers exposed to HS. In conclusion, dietary supplementation of four Se sources (0.3 mg/kg) exhibited similar protective effects on HS-induced hepatic lipid metabolism disorders of broilers, and the protective effect is connected to the relieving of ER stress.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Selênio , Animais , Selênio/farmacologia , Selênio/metabolismo , Galinhas , Suplementos Nutricionais , Metabolismo dos Lipídeos , Resposta ao Choque Térmico , Fígado/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Estresse do Retículo Endoplasmático
20.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37875147

RESUMO

The main objective of this study is to explore how various amounts of Bet affect growth performance, nutritional digestibility, and intestinal health of growing rabbits under high-temperature environment in summer. A total of 150 healthy 35-d-old weaned QiXing meat rabbits (Germany White rabbit × Sichuan White rabbit) were individually assigned to five treatments, each with 30 replicates and one rabbit per replicate. The control group was fed with basal diet, while the experimental group received a basal diet supplemented with 0.75, 1.0, 1.5, and 2.0 g Bet/kg diet, respectively. During the whole experimental stage, all animals can eat and drink freely, and they were kept in the rabbit house with an average daily temperature of 30.11 ±â€…0.5 ℃ and a relative humidity of 71.02 ±â€…5.07%. The results showed that dietary supplementation with 1.5 g/kg Bet increased average daily gain and decreased feed to gain ratio from days 1 to 42 as compared to the control group (P < 0.05), adding 0.75, 1.0, 1.5, and 2.0 g/kg Bet increased average daily gain and average daily feed intake from days 22 to 42 (P < 0.05), and increased the nutritional digestibility of acid detergent fiber (P < 0.05). Furthermore, dietary supplementation with 1.0, 1.5, and 2.0 g/kg Bet reduced d-lactate content and diamine oxidase activity in the serum (P < 0.05). Compared to the control group, supplementation of 0.75 and 1.5 g/kg Bet improved glutathione peroxidase activities in the duodenum and ileum, adding 0.75, 1.0, 1.5, and 2.0 g/kg Bet decreased malonaldehyde content in the duodenum and jejunum (P < 0.05). Moreover, the supplement of 1.5 and 2.0 g/kg Bet upregulated JAM-2 and IL-10 levels in the jejunum (P < 0.05). In conclusion, supplementation with Bet in the diet improves the growth performance, nutrient digestibility, and intestinal health of growing rabbits under high-temperature environments, and the 1.5 g Bet/kg diet group has the best effect.


Due to the lack of functional sweat glands, rabbits find it difficult to release excess heat under high-temperature conditions, resulting in heat stress. This high-level temperature condition leads to substantial damage to growth performance and intestinal health resulting in significant financial losses for the meat rabbit industry. This study found that adding betaine (Bet) to the diet can improve the growth performance and intestinal barrier integrity of heat-stressed growing rabbits, which may be related to improving intestinal antioxidant capacity and immune status. 1.5 g Bet/kg diet group showed better effects than 0, 0.75, 1.0, and 2.0 g Bet/kg diet groups in improving growth performance and intestinal health of heat-stressed growing rabbits.


Assuntos
Betaína , Temperatura Alta , Coelhos , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Intestinos , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA