Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomater Appl ; 39(3): 165-178, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38816339

RESUMO

Addressing fracture-related infections (FRI) and impaired bone healing remains a significant challenge in orthopedics and stomatology. Researchers aim to address this issue by utilizing biodegradable biomaterials, such as magnesium/poly lactic acid (Mg/PLA) composites, to offer antibacterial properties during the degradation of biodegradable implants. Existing Mg/PLA composites often lack sufficient Mg content, hindering their ability to achieve the desired antibacterial effect. Additionally, research on the anti-inflammatory effects of these composites during late-stage degradation is limited. To strengthen mechanical properties, bolster antibacterial efficacy, and enhance anti-inflammatory capabilities during degradation, we incorporated elevated Mg content into PLA to yield Mg/PLA composites. These composites underwent in vitro degradation studies, cellular assays, bacterial tests, and simulation of the PLA degradation microenvironment. 20 wt% and 40 wt% Mg/PLA composites displayed significant antibacterial properties, with three composites exhibiting notable anti-inflammatory effects. In contrast, elevated Mg content detrimentally impacted mechanical properties. The findings suggest that Mg/PLA composites hold promise in augmenting antibacterial and anti-inflammatory attributes within polymers, potentially serving as temporary regenerative materials for treating bone tissue defects complicated by infections.


Assuntos
Implantes Absorvíveis , Antibacterianos , Anti-Inflamatórios , Magnésio , Poliésteres , Magnésio/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Teste de Materiais , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
2.
ACS Biomater Sci Eng ; 10(6): 4059-4072, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38748565

RESUMO

The silicon nitride (Si3N4) coating exhibits promising potential in oral applications due to its excellent osteogenic and antibacterial properties. However, a comprehensive investigation of Si3N4 coatings in the context of dental implants is still lacking, especially regarding their corrosion resistance and in vivo performance. In this study, Si3N4 coatings were prepared on a titanium surface using the nonequilibrium magnetron sputtering method. A systematic comparison among the titanium group (Ti), Si3N4 coating group (Si3N4-Ti), and sandblasted and acid-etched-treated titanium group (SLA-Ti) has been conducted in vitro and in vivo. The results showed that the Si3N4-Ti group had the best corrosion resistance and antibacterial properties, which were mainly attributed to the dense structure and chemical activity of Si-O and Si-N bonds on the surface. Furthermore, the Si3N4-Ti group exhibited superior cellular responses in vitro and new bone regeneration and osseointegration in vivo, respectively. In this sense, silicon nitride coating shows promising prospects in the field of dental implantology.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Osteogênese , Compostos de Silício , Titânio , Titânio/química , Titânio/farmacologia , Compostos de Silício/química , Compostos de Silício/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Osteogênese/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais , Propriedades de Superfície , Osseointegração/efeitos dos fármacos , Camundongos , Teste de Materiais , Corrosão
3.
Biochem Pharmacol ; 222: 116118, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38467376

RESUMO

Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Osteogênese , MicroRNAs/metabolismo , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
4.
Biomater Adv ; 158: 213783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295646

RESUMO

In the case of a large bone defect, the human endogenous electrical field is no longer sufficient. Therefore, it is necessary to support structural electrical bone scaffolds. Barium titanate (BT) has received much attention in bone tissue engineering applications due to its biocompatibility and ability to maintain charged surfaces. However, its processability is poor and it does not have the biological activity to promote mineralization, which limits its use in bone repair. In this paper, a composite bone scaffold with excellent piezoelectric properties was prepared by combining 20 wt% calcium silicate. The influence of the light curing process on the properties of the piezoelectric biological scaffold was investigated by comparing it with the traditional piezoelectric ceramic molding method (dry pressing). Despite the structural features of 3D printing (layered structure, pore features), the piezoelectric and mechanical properties of the scaffold are weakened. However, 3D-printed scaffolds can combine structural and piezoelectric properties, which makes the 3D-printed scaffold more effective in terms of degradation and antibacterial performance. In terms of cell activity, piezoelectric properties attract proteins and nutrients into the scaffold, promoting cell growth and differentiation. Besides, it is undeniable that the pore structure of the scaffolds plays an important role in the biological properties. Finally, the 3D printed scaffolds have excellent antimicrobial properties due to the redox reaction under piezoelectric effect as well as structural characterization.


Assuntos
Antibacterianos , Artrodese , Compostos de Cálcio , Silicatos , Humanos , Bário , Impressão Tridimensional
5.
Chem Biol Interact ; 387: 110818, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000455

RESUMO

Hyperglycaemia causes impairment of osteogenic differentiation and accelerates stem cell senescence, resulting in weakened osteogenesis and disordered bone metabolism. Phytic acid (PA) is an antioxidant that is reportedly beneficial to bone homeostasis. The present study aims to clarify how PA affects the osteogenic capacity and cellular senescence of bone marrow mesenchymal stem cells (BMSCs) exposed to high-glucose environments, as well as the potential molecular mechanisms. Our results indicate that osteogenic differentiation in BMSCs cultivated in high-glucose conditions is enhanced by PA, as evidenced by increased alkaline phosphatase activity and staining, Alizarin Red S staining, osteogenic marker in in vitro studies, and increased osteogenesis in animal experiments. PA also prevented high-glucose-induced senescence of BMSCs, as evidenced by the repression of reactive oxygen species production, senescence-associated ß-galactosidase staining, and P21 and P53 expression. Furthermore, it was found that PA rescued the high-glucose-inhibited expression of phosphorylated extracellular regulated protein kinases (p-ERK). The inhibition of ERK pathway by the specific inhibitor PD98059 blocked the PA-enhanced osteogenesis of BMSCs and promoted cell senescence. Our results revealed that PA enhances osteogenic differentiation and inhibits BMSC senescence in a high-glucose environment. In addition, the activation of the ERK pathway seems to mediate the beneficial effects of PA. The findings provide novel insights that could facilitate bone regeneration in patients with diabetes.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Sistema de Sinalização das MAP Quinases , Diferenciação Celular , Glucose/metabolismo , Células Cultivadas , Células da Medula Óssea
6.
J Proteome Res ; 23(1): 3-15, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018860

RESUMO

The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.


Assuntos
Metabolômica , Periodontite , Humanos , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Biomarcadores
7.
Discov Med ; 35(179): 1104-1113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058076

RESUMO

BACKGROUND: Endosseous implants are widely used as a treatment for tooth loss, but gaps in the implant-abutment interface, and the cavity inside the implant, can cause inflammation of the tissue surrounding the implant. Currently available filling materials, however, cannot solve these problems. Therefore, the development of new antibacterial materials is key. In this study, we synthesized Ag nanoparticle-coated polytetrafluoroethylene (PTFE), analyzed the effect of Ag ion concentration, and estimated the antibacterial effects against oral pathogens in vitro. Method: The Ag nanoparticles (AgNPs)-modified PTFE was achieved using self-polymerized dopamine in an alkaline solution (2 mg/mL) and reduction reaction of Ag ions (0.01 mol/L and 0.05 mol/L). The surface features, chemical components, and wettability were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The antibacterial effect against Streptococcus mutans and Porphyromonas gingivalis was evaluated by counting colony-forming units on agar media and the visualization of bacteria present on the specimens by SEM and confocal laser scanning microscope (CLSM). RESULTS: The surface characterization results indicated that a polydopamine film was successfully formed on the PTFE membrane, and spherical AgNPs were successfully reduced. With increasing concentration of the Ag precursor, the contents of the AgNPs increased (p < 0.05). The antibacterial ratio of AgNP-coated PTFE against Streptococcus mutans and Porphyromonas gingivalis reached 94.2% and 80.6%, respectively. The results of antibacterial testing analyzed via SEM and CLSM also demonstrated the robust antibacterial ability of AgNPs-modified PTFE (p < 0.05). CONCLUSIONS: AgNPs-modified PTFE has great potential to function as an implant filling material with enhanced antibacterial properties, and has the potential to be a novel antimicrobial material for the prevention of peri-implantitis in the clinic.


Assuntos
Implantes Dentários , Nanopartículas Metálicas , Humanos , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Politetrafluoretileno
8.
ACS Biomater Sci Eng ; 9(8): 4720-4734, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37491189

RESUMO

Hyperglycemia in patients with diabetes affect osteoblast function, leading to abnormal bone metabolism and implant failure. Adequate bone volume surrounding an implant is essential for osseointegration, which can be improved by implant surface modifications. In this study, titanium surfaces were hydrothermally treated with a mixture of phytic acid (PA) and calcium hydroxide to produce a calcium-decorated surface. The control group comprised pure titanium with a sandblasted/acid-etched (SLA) surface. The elemental composition, hydrophilicity, surface roughness, and morphology of the titanium surfaces were examined. Evaluation of in vitro osteogenic differentiation ability in a high-glucose environment using alkaline phosphatase (ALP) staining, ALP activity assays, Alizarin Red S staining, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and immunofluorescence staining revealed that Ca-PA-modified SLA titanium surfaces can promote osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Evaluation of oxidative stress and aging using reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and ß-galactosidase staining revealed that Ca-PA-modified SLA titanium surfaces can reduce ROS production and ameliorate oxidative stress damage in hBMSCs. In vivo assessment of osteogenesis in a diabetic rat model revealed that Ca-PA coating promotes peri-implant osseointegration. Ca-PA-modified SLA titanium surface is a candidate for improving implant osseointegration in patients with diabetes.


Assuntos
Diabetes Mellitus , Osteogênese , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio , Ácido Fítico/farmacologia , Titânio/farmacologia , Proliferação de Células , Senescência Celular , Osseointegração , Glucose
9.
Clin Oral Implants Res ; 34(7): 707-718, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167364

RESUMO

OBJECTIVES: This clinical study aimed to assess the accuracy of implant positions using a robotic system in partially edentulous patients. MATERIALS AND METHODS: Twenty-eight partially edentulous patients received 31 implants using the robotic system. Deviations between the planned and placed implants were calculated after surgery. The deviations were compared with objective performance goals (OPGs) from reported studies of fully guided static computer-assisted implant surgery (CAIS) and dynamic CAIS. A multiple linear regression analysis was performed to investigate the possible effects of the type and side of the arch, implant location, and implant dimensions on the deviations. RESULTS: The evaluation of 31 implants resulted in a mean angle deviation of 2.81 ± 1.13° (95% confidence interval (CI): 2.40-3.23°), while the 3D deviations at the implant shoulder and apex were 0.53 ± 0.23 mm (95% CI 0.45-0.62 mm) and 0.53 ± 0.24 mm (95% CI 0.44-0.61 mm), respectively. The upper limits of the 95% CI of 3D deviations were lower than those of the corresponding OPGs; however, the angle deviation was similar to that of the OPG. No statistically significant differences were found for the type and side of the arch, implant location, and implant dimensions to the deviations (p > .05). CONCLUSIONS: The robotic system appears to achieve higher accuracy in implant positions than static and dynamic CAIS in partially edentulous patients (Chinese Clinical Trial Registry ChiCTR2300067587).


Assuntos
Implantes Dentários , Boca Edêntula , Procedimentos Cirúrgicos Robóticos , Cirurgia Assistida por Computador , Humanos , Implantação Dentária Endóssea/métodos , Estudos Prospectivos , Tomografia Computadorizada de Feixe Cônico , Desenho Assistido por Computador , Imageamento Tridimensional , Planejamento de Assistência ao Paciente , Boca Edêntula/cirurgia , Cirurgia Assistida por Computador/métodos
10.
Oral Dis ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103891

RESUMO

OBJECTIVES: Diabetes mellitus (DM) induces oxidative tissue impairment and suppresses bone formation. Some studies have shown that phytic acid has antioxidant and anti-diabetic properties. This study aimed to investigate the potential of calcium phytate (Ca-phytate) to reverse inhibited osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) in a high glucose (HG) environment and to determine the underlying mechanism. MATERIALS AND METHODS: hBMSCs were exposed to HG and palmitic acid to simulate DM in vitro. Osteogenic differentiation was measured using alkaline phosphatase staining and activity assay, alizarin red S staining, qRT-PCR, Western blot and immunofluorescence staining. A critical-size cranial defect model of type 2 diabetes mellitus (T2DM) rats was established to evaluate bone regeneration. A specific pathway inhibitor was used to explore whether the MAPK/JNK pathway was involved. RESULTS: Treatment with 34 µM Ca-phytate had the highest effect on osteogenic differentiation in HG. Ca-phytate improved cranial bone defect healing in T2DM rats. The long-term HG environment inhibited the activation of the MAPK/JNK signalling pathway, which was restored by Ca-phytate. Blocking the JNK pathway reduced the Ca-phytate-mediated osteogenic differentiation of hBMSCs. CONCLUSION: Ca-phytate induced bone regeneration in vivo and reversed HG-inhibited osteogenesis of hBMSCs in vitro via the MAPK/JNK signalling pathway.

11.
Minerva Med ; 114(4): 491-499, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33047939

RESUMO

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) plays a pivotal role in osteoblastic differentiation. However, the exact role of STAT3 in osteogenic differentiation of the pre-osteoblastic cell line MC3T3-E1 is still controversial. METHODS: In this study, we demonstrated that eradication of STAT3 signaling by the inhibitors cryptotanshinone (CPT, a STAT3-specific inhibitor) or STAT3 siRNA both suppressed osteogenic differentiation of MC3T3-E1 cells, with a decrease in alkaline phosphatase (ALP) activity, protein expressions of the osteogenic differentiation markers Collagen I (ColI), ALP, and osteocalcin (OCN), and reduced matrix mineralization capacity at the terminal stage of osteogenic differentiation. However, the inhibition of STAT3 by CPT did not affect MC3T3-E1 cell proliferation. To further clarify the effect of STAT3 on osteogenic differentiation of MC3T3-E1 cells, we forced STAT3 expression and found that this ameliorated osteogenic differentiation. RESULTS: Thus, our results confirmed that STAT3 is a likely positive regulator of osteogenic differentiation in MC3T3-E1 cells. CONCLUSIONS: These findings may provide a basis for the development of more efficient and controllable protocols for osteoblastic differentiation and facilitate their use in regenerative medicine. In addition, our results provide novel insights into the effect of the STAT3 antagonist CPT on modulation of osteogenesis.


Assuntos
Osteogênese , Fator de Transcrição STAT3 , Diferenciação Celular , Linhagem Celular , Transdução de Sinais
12.
BMC Oral Health ; 22(1): 303, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869442

RESUMO

BACKGROUND: Canine relationship is a key reference identifying anterior malocclusion and an important implication for evaluating preimplantation bone morphology at maxillary esthetic zone. This study aimed to compare the differences of maxillary central incisor-related measurements (alveolar bone thickness and tooth sagittal angulation) between Class I and Class III canine relationship and further explore the risk factors for immediate implant placement in the anterior maxilla based on cone beam computed tomography (CBCT) data. METHODS: CBCT digital imaging and communications in medicine (DICOM) files of 107 patients (54 with Class I canine relationship and 53 with Class III canine relationship) were collected and the alveolar bone thickness at mid-root (mid-root buccal thickness/MBT; palatal/MPT), apical regions (apical buccal thickness/ABT; palatal/APT) and sagittal angulation (SA) of the maxillary central incisor at the examined side were measured on the mid-sagittal observation plane. Descriptive statistical analysis and frequency distributions of the measurements based on Class I or Class III canine relationship were established. Statistical analyses were performed using Fisher's exact test, independent samples t test and Pearson correlation test with the significance level set at p < 0.05. RESULTS: The frequency distributions of maxillary central incisors' MPT, ABT, APT and SA showed significant differences between Class I and Class III canine relationships (p = 0.030, 0.024, 0.000 and 0.000, respectively). MPT (2.48 ± 0.88 mm vs. 3.01 ± 1.04 mm, p = 0.005), APT (6.79 ± 1.65 mm vs. 8.47 ± 1.93 mm, p = 0.000) and SA (12.23 ± 5.62° vs. 16.42 ± 4.49°, p = 0.000) were significantly smaller in patients with Class III canine relationship. Moreover, SA showed a strong positive correlation with APT (R = 0.723, p = 0.000) and a moderate negative correlation with ABT (R = - 0.554, p = 0.000). CONCLUSIONS: In populations with Class III canine relationship, maxillary central incisors were significantly more labially inclined and have a thinner palatal bone plate at the apex compared with Class I relationship. Clinicians should avoid palatal perforation during immediate implantation at sites of originally protrusive maxillary incisors.


Assuntos
Incisivo , Tomografia Computadorizada de Feixe Cônico Espiral , Processo Alveolar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Incisivo/anatomia & histologia , Incisivo/diagnóstico por imagem , Maxila/anatomia & histologia , Maxila/diagnóstico por imagem , Estudos Retrospectivos
13.
Bioact Mater ; 6(11): 4073-4082, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33997494

RESUMO

Developing bioactive materials for bone implants to enhance bone healing and bone growth has for years been the focus of clinical research. Barium titanate (BT) is an electroactive material that can generate electrical signals in response to applied mechanical forces. In this study, a BT piezoelectric ceramic coating was synthesized on the surface of a TC4 titanium alloy, forming a BT/TC4 material, and low-intensity pulsed ultrasound (LIPUS) was then applied as a mechanical stimulus. The combined effects on the biological responses of MC3T3-E1 cells were investigated. Results of scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction showed that an uniform nanospheres -shaped BT coating was formed on TC4 substrate. Piezoelectric behaviors were observed using piezoelectric force microscopy with the piezoelectric coefficient d33 of 0.42 pC/N. Electrochemical measures indicated that LIPUS-stimulated BT/TC4 materials could produce a microcurrent of approximately 10 µA/cm2. In vitro, the greatest osteogenesis (cell adhesion, proliferation, and osteogenic differentiation) was found in MC3T3-E1 cells when BT/TC4 was stimulated using LIPUS. Furthermore, the intracellular calcium ion concentration increased in these cells, possibly because opening of the L-type calcium ion channels was promoted and expression of the CaV1.2 protein was increased. Therefore, the piezoelectric BT/TC4 material with LIPUS loading synergistically promoted osteogenesis, rending it a potential treatment for early stage formation of reliable bone-implant contact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA