Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Water Res ; 233: 119726, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801575

RESUMO

Biofilms are an efficient way to underpin the biological process of wastewater treatment. However, little is known about the driving forces of biofilm formation and development in industrial settings. Long-term observation of anammox biofilms indicated the interplay between different microhabitats (biofilm, aggregate, plankton) was important in sustaining biofilm formation. SourceTracker analysis showed that 88.77 ± 2.26% of initial biofilm originated from the aggregate, however, independent evolution was led by anammox species in the later stage (182d and 245d). Noticeably, the source proportion of aggregate and plankton increased when temperature varied, suggesting an interchange of species between different microhabitats could be helpful to biofilm recovery. The microbial interaction pattern and community variation displayed similar trends, but the unknown source proportion of interaction was very high during the entire incubation (7-245d), thereby the same species may develop different relationships within the distinct microhabitats. The core phyla, Proteobacteria and Bacteroidota, accounted for ∼80% of interactions in all lifestyles, which is consistent with the fact that Bacteroidota played important role in the early stage of biofilm assembly. Although anammox species evolved few links with other OTUs, Candidatus Brocadiaceae still outcompeted the NS9 marine group to dominate the homogeneous selection process in the later stage (56-245d) of biofilm assembly, implying that the functional species may be decoupled from the core species in the microbial network. The conclusions will shed a light on the understanding of biofilm development in large-scale biosystems of wastewater treatment.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Biofilmes , Bacteroidetes , Proteobactérias , Nitrogênio , Oxirredução , Esgotos/microbiologia
3.
Front Bioeng Biotechnol ; 10: 1033991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324899

RESUMO

Rhizosphere-associated microbes have important implications for plant health, but knowledge of the association between the pathological conditions of soil-borne virus-infected wheat and soil microbial communities, especially changes in fungal communities, remains limited. We investigated the succession of fungal communities from bulk soil to wheat rhizosphere soil in both infected and healthy plants using amplicon sequencing methods, and assessed their potential role in plant health. The results showed that the diversity of fungi in wheat rhizosphere and bulk soils significantly differed post wheat yellow mosaic virus disease onset. The structure differences in fungal community at the two wheat health states or two compartment niches were evident, soil physicochemical properties (i.e., NH4 +) contribute to differences in fungal community structure and alpha diversity. Comparison analysis showed Mortierellomycetes and Dothideomycetes as dominant communities in healthy wheat soils at class level. The genus Pyronemataceae and Solicoccozyma were significantly are significantly enriched in rhizosphere soil of diseased plant, the genus Cystofilobasidium, Cladosporium, Mortierella, and Stephanonectria are significantly enriched in bulk soil of healthy plant. Co-occurrence network analysis showed that the fungi in healthy wheat soil has higher mutual benefit and connectivity compared with diseased wheat. The results of this study demonstrated that the occurrence of wheat yellow mosaic virus diseases altered both fungal community diversity and composition, and that NH4 + is the most important soil physicochemical factor influencing fungal diversity and community composition.

4.
Viruses ; 14(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36016412

RESUMO

Ubiquitination is a major post-translational modification (PTM) involved in almost all eukaryotic biological processes and plays an essential role in plant response to pathogen infection. However, to date, large-scale profiling of the changes in the ubiquitome in response to pathogens, especially viruses, in wheat has not been reported. This study aimed to identify the ubiquitinated proteins involved in Chinese wheat mosaic virus (CWMV) infection in wheat using a combination of affinity enrichment and high-resolution liquid chromatography-tandem mass spectroscopy. The potential biological functions of these ubiquitinated proteins were further analyzed using bioinformatics. A total of 2297 lysine ubiquitination sites in 1255 proteins were identified in wheat infected with CWMV, of which 350 lysine ubiquitination sites in 192 proteins were differentially expressed. These ubiquitinated proteins were related to metabolic processes, responses to stress and hormones, plant-pathogen interactions, and ribosome pathways, as assessed via Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Furthermore, we found that the ubiquitination of Ta14-3-3 and TaHSP90, which are essential components of the innate immune system, was significantly enhanced during CWMV infection, which suggested that ubiquitination modification plays a vital role in the regulatory network of the host response to CWMV infection. In summary, our study puts forward a novel strategy for further probing the molecular mechanisms of CWMV infection. Our findings will inform future research to find better, innovative, and effective solutions to deal with CWMV infection in wheat, which is the most crucial and widely used cereal grain crop.


Assuntos
Triticum , Proteínas Ubiquitinadas , Lisina/metabolismo , Vírus de Plantas , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
5.
Front Microbiol ; 12: 672559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084157

RESUMO

Protein lysine acetylation (Kac) is an important post-translational modification mechanism in eukaryotes that is involved in cellular regulation. To investigate the role of Kac in virus-infected plants, we characterized the lysine acetylome of Nicotiana benthamiana plants with or without a Chinese wheat mosaic virus (CWMV) infection. We identified 4,803 acetylated lysine sites on 1,964 proteins. A comparison of the acetylation levels of the CWMV-infected group with those of the uninfected group revealed that 747 sites were upregulated on 422 proteins, including chloroplast localization proteins and histone H3, and 150 sites were downregulated on 102 proteins. Nineteen conserved motifs were extracted and 51 percent of the acetylated proteins located on chloroplast. Nineteen Kac sites were located on histone proteins, including 10 Kac sites on histone 3. Bioinformatics analysis results indicated that lysine acetylation occurs on a large number of proteins involved in biological processes, especially photosynthesis. Furthermore, we found that the acetylation level of chloroplast proteins, histone 3 and some metabolic pathway-related proteins were significantly higher in CWMV-infected plants than in uninfected plants. In summary, our results reveal the regulatory roles of Kac in response to CWMV infection.

6.
Biology (Basel) ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802832

RESUMO

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.

7.
BMC Genomics ; 22(1): 49, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430760

RESUMO

BACKGROUND: Histone acetylation is a ubiquitous and reversible post-translational modification in eukaryotes and prokaryotes that is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT activity is important for the modification of chromatin structure in eukaryotic cells, affecting gene transcription and thereby playing a crucial regulatory role in plant development. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana, Oryza sativa, barley, grapes, tomato, litchi and Zea mays, but comparable identification and analyses have not been conducted in wheat (Triticum aestivum). RESULTS: In this study, 31 TaHATs were identified and divided into six groups with conserved gene structures and motif compositions. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa and Triticum aestivum HAT genes. The TaHATs appeared to be regulated by cis-acting elements such as LTR and TC-rich repeats. The qRT-PCR analysis showed that the TaHATs were differentially expressed in multiple tissues. The TaHATs in expression also responded to temperature changes, and were all significantly upregulated after being infected by barley streak mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV) and wheat yellow mosaic virus (WYMV). CONCLUSIONS: These results suggest that TaHATs may have specific roles in the response to viral infection and provide a basis for further study of TaHAT functions in T. aestivum plant immunity.


Assuntos
Oryza , Triticum , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histona Acetiltransferases/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
8.
Appl Opt ; 60(34): 10736-10742, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200940

RESUMO

The self-mixing interference (SMI) signal carries the information of the external moving object, which has great physical significance and application prospects for extracting and analyzing the information of the external object. In this paper, we propose a vibration measurement method based on a reverse point recognition algorithm on the SMI laser signal. By extracting and analyzing the hill and valley values of the SMI signal to determine the reverse point, combined with the semifringe counting method, the vibration information of external objects can be accurately extracted. The method we propose simplifies the displacement reconstruction process with high accuracy. The simulation and experimental results show that this method can achieve high-precision measurements of microvibration with an absolute error of less than 19 nm.

9.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008895

RESUMO

Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.


Assuntos
Canais de Cálcio , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Fisiológico/genética , Triticum , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Triticum/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA