RESUMO
Background: Mitochondria are the center of cellular metabolism. The relationship between mitochondria and diseases has also been studied for a long time. However, the prognostic role of mitochondrial-related genes (MRGs) in patients with glioma and their biological effects are still unclear. The aim of the study was to construct a mitochondria-related model to assess prognosis and potential biological effects like immune infiltration, gene pathway and mutation, and give some predictive chemotherapeutic agents. Methods: The data of 675 patients from The Cancer Genome Atlas (TCGA) database were used to identify MRG signature and construct a prognostic model. After validating its robustness in Chinese Glioma Genome Atlas (CGGA), two risk groups derived from the prognostic model were then conducted with Gene Set Enrichment Analysis (GSEA), immune status, mutation status and chemotherapeutic agents prediction. Results: The prognostic model built from six gene signatures can successfully predict the prognosis and reflect clinicopathological characteristics. Patients in high-risk group displayed significantly worse overall survival (OS), immunosuppression effects, and mutation markers with worse prognosis. Twelve chemotherapeutic agents with strongly correlated sensitivity and risk scores were selected as potential agents. Conclusions: The novel MRG signatures (TYMP, TSFM, MGME1, BOLA3, TRMT5, NDUFA9) can predict prognosis and immunological status in glioma.
RESUMO
BACKGROUND: Glioma stem cells (GSCs), which are known for their therapy resistance, play a substantial role in treatment inefficacy for glioblastoma multiforme (GBM). TRIM37, a member of the tripartite motif (TRIM) protein family initially linked to a rare growth disorder, has been recognized for its oncogenic role. However, the mechanism by which TRIM37 regulates tumor growth in glioma and GSCs is unclear. METHODS: For the in vitro experiments, gene expression was measured by western blotting, RT-qPCR, and immunofluorescence. Cell viability was detected by CCK-8, and cell apoptosis was detected by flow cytometry. The interaction between Enhancer of Zeste Homolog 2 (EZH2) and TRIM37 was verified by co-immunoprecipitation (Co-IP). The interaction between EZH2 and the PTCH1 promoter was verified using dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). For the in vivo experiments, an orthotopically implanted glioma mouse model was used to validate tumor growth. RESULTS: The expression of TRIM37 is higher in GSCs compared with matched non-GSCs. TRIM37 knockdown promotes apoptosis, decreased stemness in GSCs, and reduces tumor growth in GSCs xenografts of nude mice. TRIM37 and EZH2 co-localize in the nucleus and interact with each other. TRIM37 knockdown or EZH2 inhibition downregulates the protein expressions associated with the Sonic Hedgehog (SHH) pathway. EZH2 epigenetically downregulates PTCH1 to activate SHH pathway in GSCs. CONCLUSIONS: TRIM37 maintains the cell growth and stemness in GSCs through the interaction with EZH2. EZH2 activates SHH stem cell signaling pathway by downregulating the expression of SHH pathway suppressor PTCH1. Our findings suggest that TRIM37 may be a potential therapeutic target for GBM.
Assuntos
Neoplasias Encefálicas , Proteína Potenciadora do Homólogo 2 de Zeste , Glioma , Proteínas Hedgehog , Células-Tronco Neoplásicas , Receptor Patched-1 , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Glioma/metabolismo , Glioma/genética , Glioma/patologia , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Camundongos Nus , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: A strong immunosuppressive tumor microenvironment (TME) represents the major barrier responsible for the failure of current immunotherapy approaches in treating Glioblastoma Multiforme (GBM). Within the TME, the regulatory T cells (Tregs) exert immunosuppressive effects on CD8+ T cell - mediated anti-cancer immune killing. Consequently, targeting and inhibiting their immunosuppressive function emerges as an effective therapeutic strategy for GBM. The present study aimed to investigate the mechanisms and effects of Suberanilohydroxamic Acid (SAHA), a histone deacetylase inhibitor, on immunosuppressive Tregs. METHODS: The tumor-infiltrating immune cells in the immunocompetent GBM intracranial implanted xenograft mouse model were analyzed by immunohistochemistry and flow cytometry techniques. The mRNA expressions were assessed through the RT-qPCR method, while the related protein expressions were determined using western blot, ELISA, immunofluorescence (IF), and flow cytometry techniques. The relationship between c-Myc and C-C motif Chemokine Ligand 1 (CCL1) promotor was validated through a dual-luciferase reporter assay system and chromatin immunoprecipitation. RESULTS: SAHA suppressed effectively tumor growth and extended significantly overall survival in the immunocompetent GBM intracranial xenograft mouse model. Additionally, it promoted the infiltration of CD8+ T lymphocytes while suppressed the infiltration of CD4+ CD25+ Tregs. Furthermore, SAHA enhanced anti-PD-L1 immune therapy in the intracranial xenograft of mice. Mechanistically, SAHA exerted its effects by inhibiting histone deacetylase 2 (HDAC2), thereby suppressing the binding between c-Myc and the CCL1 promotor. CONCLUSION: SAHA inhibited the binding of c-Myc with the CCL1 promoter and then suppressed the transcription of CCL1.Additionally, it effectively blocked the interplay of CCL1-CCR8, resulting in reduced activity of Tregs and alleviation of tumor immunosuppression.
Assuntos
Antígeno B7-H1 , Neoplasias Encefálicas , Quimiocina CCL1 , Inibidores de Histona Desacetilases , Células-Tronco Neoplásicas , Linfócitos T Reguladores , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Camundongos , Humanos , Inibidores de Histona Desacetilases/farmacologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Vorinostat/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Quimiocina CCL1/metabolismo , Quimiocina CCL1/antagonistas & inibidores , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Glioma/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Microambiente Tumoral/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/imunologiaAssuntos
Dissecção Aórtica , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Aneurisma Intracraniano/complicações , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia , Dissecção Aórtica/complicações , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Vesícula/etiologia , Vesícula/diagnóstico por imagemRESUMO
Radiotherapy alters the tumor microenvironment and reprograms cellular metabolism. Transition of tumor cell phenotypes contributes to post-radiotherapy tumor recurrence. Low radiosensitivity of glioma stem cells is one of the reasons for radiotherapy failure. Here, we found that radiotherapy resulted in a higher proportion of infiltration of inflammatory macrophages in glioma non-stem cell grafts compared with that in glioma stem cell-transplanted tumors in a mouse model, where immunosuppressive macrophages dominated in the tumor microenvironment. In radioresistant glioma stem cells, ionizing radiation upregulated CD47 expression by AMP-activated protein kinase (AMPK), resulting in the inhibition of phagocytosis and the promotion of M2-like polarization in macrophages. Ionizing radiation promoted H3K4 methylation on CD47 promotor by downregulating KDM5A. Hyper-phosphorylated retinoblastoma protein RB maintained its dissociation status with KDM5A following AMPK activation, which inhibited the demethylated function of KDM5A. In contrast, in radiosensitive glioma non-stem cells, RB S807/S811 hypo-phosphorylation contributed to the binding of RB with KDM5A, which suppressed H3K4 methylation on CD47 promotor. In addition, ionizing radiation promoted H3K27 acetylation on CD47 promotor by HDAC7 in glioma stem cells. These data suggested that glioma stem cells reprogrammed the tumor immune microenvironment by epigenetic editing to escape macrophage phagocytosis after ionizing radiation. Targeting CD47 might be a potential strategy to sensitize glioblastoma to radiotherapy.
Assuntos
Antígeno CD47 , Glioma , Camundongos , Animais , Antígeno CD47/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Fagocitose , Glioma/genética , Glioma/radioterapia , Células-Tronco Neoplásicas/metabolismo , Metilação , Microambiente TumoralRESUMO
Immunotherapy strategies targeting the programmed cell death 1 (PD-1) in clinical treatments have shown limited success in controlling glioblastoma malignancies. Metformin exserts antitumor function, yet the underlying mechanisms remain unclear. Here, we investigated whether metformin could enhance the effectiveness of anti-PD-1 therapy by activating the immune system. Whether combination of an anti-PD-1 antibody or not, metformin significantly increased tumor-infiltrating CD4+ T cells while decreased regulatory T (Treg) cells in a mouse GBM model. Additionally, metformin reduced CC motif chemokine receptor CCR8 and elevated Interleukin 17 A (IL-17 A) expressions. Mechanistically, metformin reduces histone acetylation at the CCR8 promotor and inhibits CCR8 expression by upregulating AMP-activated protein kinase (AMPK)-activated sirtuin 2 (SIRT2). Metformin enhances the effectiveness of anti-PD-1 immunotherapy by reducing CCR8 expression on tumor-infiltrating Treg cells, suggesting that metformin has an antitumor effect by alleviating immunosuppression and promoting T cell-mediated immune response.
Assuntos
Glioblastoma , Inibidores de Checkpoint Imunológico , Metformina , Animais , Camundongos , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Imunidade , Imunoterapia , Metformina/farmacologia , Metformina/uso terapêutico , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
Retinoblastoma-binding protein (RBBP) family is a class of proteins that can interact with tumor suppressor retinoblastoma protein (pRb). RBBP4 and RBBP7 are the only pair of homologous proteins in this family, serving as scaffold proteins whose main function is to offer a platform to indirectly connect two proteins. This characteristic allows them to extensively participate in the binding of various proteins and epigenetic complexes, indirectly influencing the function of effector proteins. As a result, they are often highlighted in organism activities involving active epigenetic modifications, such as embryonic development and cancer activation. In this review, we summarize the structural characteristics of RBBP4/7, the complexes they are involved in, their roles in embryonic development and cancer, as well as potential future research directions, which we hope to inspire the field of epigenetic research in the future.
RESUMO
BACKGROUND: Chimeric antigen receptor (CAR)-T immunotherapy fails to treat solid tumors due in part to immunosuppressive microenvironment. Excess lactate produced by tumor glycolysis increases CAR-T immunosuppression. The mechanism of lactate inducing the formation of immunosuppressive microenvironment remains to be further explored. METHODS: Immunocyte subpopulations and molecular characteristics were analyzed in the orthotopic xenografts of nude mice using flow cytometry assay and immunohistochemical staining after oxamate, a lactate dehydrogenase A (LDHA) inhibitor, and control T or CAR-T cells injection alone or in combination. RT-qPCR, western blot, flow cytometry, immunofluorescence, luciferase reporter assay, chromatin immunoprecipitation and ELISA were performed to measure the effect of lactate on the regulation of CD39, CD73 and CCR8 in cultured glioma stem cells, CD4 + T cells or macrophages. RESULTS: Oxamate promoted immune activation of tumor-infiltrating CAR-T cells through altering the phenotypes of immune molecules and increasing regulatory T (Treg) cells infiltration in a glioblastoma mouse model. Lactate accumulation within cells upregulated CD39, CD73 and CCR8 expressions in both lactate-treated cells and glioma stem cells-co-cultured CD4 + T cells and macrophages, and intracellular lactate directly elevated the activities of these gene promotors through histone H3K18 lactylation. CONCLUSIONS: Utilizing lactate generation inhibitor not only reprogramed glucose metabolism of cancer stem cells, but also alleviated immunosuppression of tumor microenvironment and reduced tumor-infiltrating CAR-Treg cells, which may be a potential strategy to enhance CAR-T function in glioblastoma therapy.
Assuntos
Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Glioblastoma/genética , Receptores de Antígenos Quiméricos/genética , Camundongos Nus , Linhagem Celular Tumoral , Lactatos , Microambiente Tumoral , Receptores CCR8RESUMO
AIM: Immunotherapy for glioblastoma multiforme (GBM) is limited because of a strongly immunosuppressive tumor microenvironment (TME). Remodeling the immune TME is an effective strategy to eliminate GBM immunotherapy resistance. Glioma stem cells (GSCs) are inherently resistant to chemotherapy and radiotherapy and involved in immune evasion mechanism. This study aimed to investigate the effects of histone methyltransferases 2 (EHMT2 or G9a) on immunosuppressive TME and whether this effect was related to changes on cell stemness. METHODS: Tumor-infiltrating immune cells were analyzed by flow cytometry and immunohistochemistry in orthotopic implanted glioma mice model. The gene expressions were measured by RT-qPCR, western blot, immunofluorescence, and flow cytometry. Cell viability was detected by CCK-8, and cell apoptosis and cytotoxicity were detected by flow cytometry. The interaction of G9a and F-box and WD repeat domain containing 7 (Fbxw7) promotor was verified by dual-luciferase reporter assay and chromatin immunoprecipitation. RESULTS: Downregulation of G9a retarded tumor growth and extended survival in an immunocompetent glioma mouse model, promoted the filtration of IFN-γ + CD4+ and CD8+ T lymphocytes, and suppressed the filtration of PD-1+ CD4+ and CD8+ T lymphocytes, myeloid-derived suppressor cells (MDSCs) and M2-like macrophages in TME. G9a inhibition decreased PD-L1 and increased MHC-I expressions by inactivating Notch pathway companying stemness decrease in GSCs. Mechanistically, G9a bound to Fbxw7, a Notch suppressor, to inhibit gene transcription through H3K9me2 of Fbxw7 promotor. CONCLUSION: G9a promotes stemness characteristics through binding Fbxw7 promotor to inhibit Fbxw7 transcription in GSCs, forming an immunosuppressive TME, which provides novel treatment strategies for targeting GSCs in antitumor immunotherapy.