RESUMO
OBJECTIVE: To construct a combined radiomics model based on pre-treatment ultrasound for predicting of advanced breast cancers sensitive to neoadjuvant chemotherapy (NAC). METHODS: A total of 288 eligible breast cancer patients who underwent NAC before surgery were enrolled in the retrospective study cohort. Radiomics features reflecting the phenotype of the pre-NAC tumors were extracted. With features selected using the least absolute shrinkage and selection operator (LASSO) regression, radiomics signature (Rad-score) was established based on the pre-NAC ultrasound. Then, radiomics nomogram of ultrasound (RU) was established on the basis of the best radiomic signature incorporating independent clinical features. The performance of RU was evaluated in terms of calibration curve, area under the curve (AUC), and decision curve analysis (DCA). RESULTS: Nine features were selected to construct the radiomics signature in the training cohort. Combined with independent clinical characteristics, the performance of RU for identifying Grade 4-5 patients was significantly superior than the clinical model and Rad-score alone (p < 0.05, as per the Delong test), which achieved an AUC of 0.863 (95% CI, 0.814-0.963) in the training group and 0.854 (95% CI, 0.776-0.931) in the validation group. DCA showed that this model satisfactory clinical utility, suggesting its robustness as a response predictor. CONCLUSION: This study demonstrated that RU has a potential role in predicting drug-sensitive breast cancers. ADVANCES IN KNOWLEDGE: Aiming at early detection of Grade 4-5 breast cancer patients, the radiomics nomogram based on ultrasound has been approved as a promising indicator with high clinical utility. It is the first application of ultrasound-based radiomics nomogram to distinguish drug-sensitive breast cancers.
Assuntos
Neoplasias , Nomogramas , Terapia Neoadjuvante , Estudos Retrospectivos , Ultrassonografia , Estudos de CoortesRESUMO
OBJECTIVE: This study aimed to develop a radiomics nomogram that incorporates radiomics, conventional ultrasound (US) and clinical features in order to differentiate triple-negative breast cancer (TNBC) from fibroadenoma. METHODS: A total of 182 pathology-proven fibroadenomas and 178 pathology-proven TNBCs, which underwent preoperative US examination, were involved and randomly divided into training (n = 253) and validation cohorts (n = 107). The radiomics features were extracted from the regions of interest of all lesions, which were delineated on the basis of preoperative US examination. The least absolute shrinkage and selection operator model and the maximum relevance minimum redundancy algorithm were established for the selection of tumor status-related features and construction of radiomics signature (Rad-score). Then, multivariate logistic regression analyses were utilized to develop a radiomics model by incorporating the radiomics signature and clinical findings. Finally, the usefulness of the combined nomogram was assessed by using the receiver operator characteristic curve, calibration curve, and decision curve analysis (DCA). RESULTS: The radiomics signature, composed of 12 selected features, achieved good diagnostic performance. The nomogram incorporated with radiomics signature and clinical data showed favorable diagnostic efficacy in the training cohort (AUC 0.986, 95% CI, 0.975-0.997) and validation cohort (AUC 0.977, 95% CI, 0.953-1.000). The radiomics nomogram outperformed the Rad-score and clinical models (p < 0.05). The calibration curve and DCA demonstrated the good clinical utility of the combined radiomics nomogram. CONCLUSION: The radiomics signature is a potential predictive indicator for differentiating TNBC and fibroadenoma. The radiomics nomogram associated with Rad-score, US conventional features, and clinical data outperformed the Rad-score and clinical models. ADVANCES IN KNOWLEDGE: Recent advances in radiomics-based US are increasingly showing potential for improved diagnosis, assessment of therapeutic response and disease prediction in oncology. Rad-score is an independent predictive indicator for differentiating TNBC and fibroadenoma. The radiomics nomogram associated with Rad-score, US conventional features, and clinical data outperformed the Rad-score and clinical models.