Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Plant Sci ; 15: 1390019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689840

RESUMO

Reservoirs, heavily influenced by artificial management, often harbor phytoplankton assemblages dominated by cyanobacteria or dinoflagellates, triggering significant changes in aquatic ecosystems. However, due to limited sampling frequency and insufficient attention to species composition, the bloom processes and key characteristics of phytoplankton community structure have not been systematically elucidated. During the low-water level period when blooms are most likely to occur (June to September) in a tributary bay of the Three Gorges Reservoir, daily sampling was conducted to investigate phytoplankton community composition, identify significant environmental factors, and evaluate important structure characteristics of phytoplankton community. The results showed that Microcystis aeruginosa maintained a clear dominance for almost a month in stage 1, with low Shannon and evenness but a high dominance index. Phytoplankton total density and biomass decreased drastically in stage 2, but Microcystis aeruginosa still accounted for some proportion. The highest Shannon and evenness but the lowest dominance index occurred in stage 3. Peridiniopsis niei occurred massively in stage 4, but its dominant advantages lasted only one to two days. NH4-N was responsible for the dominance of Microcystis aeruginosa, while TP and PO4-P was responsible for the dominance of Peridiniopsis niei; however, precipitation contributed to their drastic decrease or disappearance to some extent. The TN : TP ratio could be considered as an important indicator to determine whether Microcystis aeruginosa or Peridiniopsis niei dominated the phytoplankton community. Throughout the study period, physiochemical factors explained more variation in phytoplankton data than meteorological and hydrological factors. Pairwise comparisons revealed an increase in average ß diversity with stage progression, with higher ß diversities based on abundance data than those based on presence/absence data. Repl had a greater effect on ß diversity differences based on presence/absence data, whereas RichDiff had a greater effect on ß diversity differences based on species abundance data. Co-occurrence networks for stage 1 showed the most complex structure, followed by stage 4, while the network for stage 3 was relatively sparse, although the overall community division remained compact. This study provides a useful attempt to explore the status and changes in phytoplankton community structure during the bloom process through high-resolution investigation.

2.
Immunobiology ; 229(3): 152804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615511

RESUMO

BACKGROUND: Inducible co-stimulatory factor (ICOS) has a dual role: activating cytotoxic T cells against tumors or exacerbating immunosuppression of regulatory T cells (Tregs) to participate in immune evasion. However, the correlation between ICOS and its co-expression with inhibitory immune checkpoints (IICs) and prognosis in acute myeloid leukemia (AML) is little known. METHODS: The prognostic importance of ICOS and IICs in 62 bone marrow (BM) samples of de novo AML patients from our clinical center (GZFPH) was explored and then the RNA sequencing data of 155 AML patients from the Cancer Genome Atlas (TCGA) database was used for validation. RESULTS: In both GZFPH and TCGA cohorts, high expression of ICOS was significantly associated with poor overall survival (OS) in patients with AML (P < 0.05). Importantly, co-expression of ICOS and PD-1, PD-L1, PD-L2, CTLA-4, and LAG-3 predicted poor OS in AML; among them, ICOS/PD-1 was the optimal combination of immune checkpoints (ICs). The co-expression of ICOS and PD-1 was correlated with poor OS in non-acute promyelocytic leukemia (non-APL) patients following chemotherapy. Additionally, ICOS/PD-1 was an independent OS-predicting factor (P < 0.05). Notably, a nomogram model was constructed by combining ICOS/PD-1, age, European Leukemia Net (ELN) risk stratification, and therapy to visually and personalized predict the 1-, 3-, and 5-year OS of patients with non-APL. CONCLUSION: Increased expression of ICOS predicted poor outcomes, and ICOS/PD-1 was the optimal combination of ICs to predict outcomes in patients with AML, which might be a potential immune biomarker for designing novel AML therapy.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis , Leucemia Mieloide Aguda , Receptor de Morte Celular Programada 1 , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Adulto , Biomarcadores Tumorais , Idoso , Regulação Leucêmica da Expressão Gênica
3.
Front Plant Sci ; 15: 1381798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584942

RESUMO

The vertical distribution of phytoplankton plays a crucial role in shaping the dynamics and structure of aquatic communities. In highly dynamic reservoir systems, water level fluctuations significantly affect the physiochemical conditions and the phytoplankton community. However, the specific effects on the vertical characteristics of phytoplankton between the mainstream and the tributary bay of the reservoir remain unstudied. This study investigated the vertical aspects of phytoplankton density, biomass, α and ß diversity through monthly sampling over two years in the mainstream (Chang Jiang, CJ) and a tributary bay (Xiang Xi, XX) of the Three Gorges Reservoir in China. Phytoplankton density and biomass were significantly higher in XX, indicating an increased risk of algal blooms in the tributary. The phytoplankton community in CJ showed more stable species-environment relationships, a lower Shannon index and a higher evenness index, suggesting a relatively simple structure and a more uniform distribution of phytoplankton among different water layers. Conversely, XX showed greater differences between water layers (higher ß diversity), with significant negative correlations with water level and positive correlations with DO difference, dissolved silica (DSi) difference, and stratification. Peak phytoplankton density and biomass, as well as high ß diversity in XX, occurred during periods of decreased water levels with strong stratification in spring and summer. A structural equation model complemented by path analysis revealed that a decrease in water level could increase ß diversity either directly through internal processes with extended residence time or indirectly by modifying stratification and the vertical distribution of DSi in XX. Therefore, a proposed water quality management strategy for XX was to increase the water level or reduce ß diversity by implementing artificial mixing during stratification periods. Overall, this study lies in its comprehensive investigation of the vertical characteristics of the phytoplankton community in both the mainstream and the tributary bay of the Three Gorges Reservoir, elucidating the significant impact of water level fluctuations and providing insights for targeted water quality management strategies in the tributary bay to mitigate potential ecological impacts.

4.
J Environ Manage ; 357: 120697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565031

RESUMO

Global ecosystems are facing anthropogenic threats that affect their ecological functions and biodiversity. However, we still lack an understanding of how biodiversity can mediate the responses of ecosystems or communities to human disturbance across spatial gradients. Here, we examined how existing, spatial patterns of biodiversity influence the ecological effects of small hydropower plants (SHPs) on macroinvertebrates in river ecosystems. This study found that levels of biodiversity (e.g., number of species) can influence the degrees of its alterations by SHPs occurring along elevational gradients. The results of the study reveal that the construction of SHPs has various effects on biodiversity. For example, low-altitude areas with low biodiversity (species richness less than 12) showed a small increase in biodiversity compared to high-altitude areas (species richness more than 12) under SHP disturbances. The increases in the effective habitat area of the river segment could be a driver of the enhanced biodiversity in response to SHP effects. Changes in the numerically dominant species contributed to the overall level of community variation from disturbances. Location-specific strategies may mitigate the effects of SHPs and perhaps other disturbances.


Assuntos
Ecossistema , Rios , Humanos , Biodiversidade , Altitude
5.
Sci Total Environ ; 915: 169819, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190913

RESUMO

The degradation of water quality induced by the construction of large-scale hydraulic projects is one of the primary public concerns; however, it is rarely addressed with long-term field observation data. Here, we reported the long-term (2003-2021) trends, seasonal patterns, and overall condition of water quality of the Three Gorges Reservoir (TGR) with an enhanced water quality index (WQI). Specifically, to emphasize the importance of the biological role in water quality assessment, chlorophyll-a (Chla) was incorporated into WQI, and then a novel workflow using machine learning approach based on Random Forest (RF) model was constructed to develop a minimal water quality index (WQImin). The enhanced WQI indicated an overall "good" water quality condition, exhibiting a gradually improving trend subsequent to the reservoir impoundment in 2003. Meanwhile, the assessment revealed that the water quality has discernible seasonal patterns, characterized by poorer conditions in the spring and summer seasons. Furthermore, the RF model identified Chla, dissolved oxygen (DO), ammonium nitrogen (NH4-N), water temperature (WT), pH, and total nitrogen (TN) as key parameters for the WQImin, with Chla emerging as the most important factor in determining WQImin in our study. Moreover, weighted WQImin models exhibited improved performance in estimating WQI. Our study emphasizes the importance of biological parameters in water quality assessment, and introduces a systematic workflow to facilitate the development of WQImin for accurate and cost-efficient water quality assessment. Furthermore, our study makes a substantial contribution to the advancement of knowledge regarding long-term trends and seasonal patterns in water quality of large reservoirs, which provides a foundational basis for guiding water quality management practices for reservoirs worldwide.

6.
Zookeys ; 1166: 121-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333897

RESUMO

Siphlonurusdongxi Li & Tong, sp. nov. from Shangri-La City, Yunnan Province, China, is described based on egg, nymph, and winged stages. The new species is closely related to S.davidi (Navás, 1932), and can be distinguished by the colour of the imago, the forking point of MP, the penis, posterolateral spines of tergum IX of imagoes, and first abdominal terga nymph, as well as the structure of the egg. The new species and S.davidi have the same morphological and structural characteristics, such as the long cubital area with many intercalaries, cross veins between C, Sc, RA, and RSa1 surrounded with distinct pigments, the strong curvature of vein CuP in the forewing, the broad expansion of the hindwing, the membranous penis lobes fused without teeth, supporting the proposition of a new species complex, the Siphlonurusdavidi group. The structures of the penis and the egg of the new species could help understand the origin and evolution of the genus Siphlonurus.

7.
Ann Med ; 55(1): 2201507, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37070487

RESUMO

BACKGROUND: High expression of immune checkpoints (ICs) and senescence molecules (SMs) contributes to T cell dysfunction, tumor escape, and progression, but systematic evaluation of them in co-expression patterns and prognosis in acute myeloid leukemia (AML) was lacking. METHODS: Three publicly available datasets (TCGA, Beat-AML, and GSE71014) were first used to explore the effect of IC and SM combinations on prognosis and the immune microenvironment in AML, and bone marrow samples from 68 AML patients from our clinical center (GZFPH) was further used to validate the findings. RESULTS: High expression of CD276, Bcl2-associated athanogene 3 (BAG3), and SRC was associated with poor overall survival (OS) of AML patients. CD276/BAG3/SRC combination, standard European Leukemia Net (ELN) risk stratification, age, and French-American-British (FAB) subtype were used to construct a nomogram model. Interestingly, the new risk stratification derived from the nomogram was better than the standard ELN risk stratification in predicting the prognosis for AML. A weighted combination of CD276 and BAG3/SRC positively corrected with TP53 mutation, p53 pathway, CD8+ T cells, activated memory CD4+ T cells, T-cell senescence score, and Tumor Immune Dysfunction and Exclusion (TIDE) score estimated by T-cell dysfunction. CONCLUSION: High expression of ICs and SMs was associated with poor OS of AML patients. The co-expression patterns of CD276 and BAG3/SRC might be potential biomarkers for risk stratification and designing combinational immuno-targeted therapy in AML.Key MessagesHigh expression of CD276, BAG3, and SRC was associated with poor overall survival of AML patients.The co-expression patterns of CD276 and BAG3/SRC might be potential biomarkers for risk stratification and designing combinational immuno-targeted therapy in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Prognóstico , Mutação , Linfócitos T CD8-Positivos , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo
8.
J Pharm Anal ; 13(1): 63-72, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36820077

RESUMO

Ribosomes are abundant, large RNA-protein complexes that are the sites of all protein synthesis in cells. Defects in ribosomal proteins (RPs), including proteoforms arising from genetic variations, alternative splicing of RNA transcripts, post-translational modifications and alterations of protein expression level, have been linked to a diverse range of diseases, including cancer and aging. Comprehensive characterization of ribosomal proteoforms is challenging but important for the discovery of potential disease biomarkers or protein targets. In the present work, using E. coli 70S RPs as an example, we first developed a top-down proteomics approach on a Waters Synapt G2 Si mass spectrometry (MS) system, and then applied it to the HeLa 80S ribosome. The results were complemented by a bottom-up approach. In total, 50 out of 55 RPs were identified using the top-down approach. Among these, more than 30 RPs were found to have their N-terminal methionine removed. Additional modifications such as methylation, acetylation, and hydroxylation were also observed, and the modification sites were identified by bottom-up MS. In a HeLa 80S ribosomal sample, we identified 98 ribosomal proteoforms, among which multiple truncated 80S ribosomal proteoforms were observed, the type of information which is often overlooked by bottom-up experiments. Although their relevance to diseases is not yet known, the integration of top-down and bottom-up proteomics approaches paves the way for the discovery of proteoform-specific disease biomarkers or targets.

9.
Biology (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205075

RESUMO

Spatial biodiversity is a key issue in biogeography for the explorations of biological origin and diversification. However, seldom studies have addressed the temporal changes in spatial patterns of biodiversity. We explored the taxonomic and functional diversities of riverine macroinvertebrates in central China, with the elevational gradient, in different seasons in a normal climate year (i.e., no extreme anomalies in the annual precipitation or average annual temperature). The air temperature and streamflow discharge were decreased monotonically with the increase of elevation both in the dry and wet seasons. In addition, the total nitrogen had no significant change with the increase of elevational gradient in the dry season but showed a monotonically decreasing pattern in the wet season. The total phosphorus showed a monotonically decreasing pattern with the elevational gradient in the dry season but had no significant change in the wet season. The spatial pattern of taxonomic diversity of macroinvertebrates along the elevational gradient showed complex patterns, but the functional diversity had either the unimodal or monotonically decreasing pattern. In addition, the functional diversity with the elevational gradient had similar patterns between the dry and wet seasons. Further analysis of the elevational pattern in different seasons is an important basis for understanding the status quo of functional diversity and formulating countermeasures for biodiversity conservation.

10.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854211

RESUMO

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce
11.
Sci Total Environ ; 806(Pt 4): 150948, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655635

RESUMO

Reservoirs are a rapidly increasing water body providing water supply, irrigation, and many other benefits for human societies globally. However, due to changes in hydrological conditions, building reservoirs tends to bring adverse effects such as eutrophication and phytoplankton blooms, reducing the ecosystem service values. This study focuses on using the empirical dynamic modeling (EDM), an emerging approach for nonlinear analysis, to investigate the nonlinear causal relationship of water level fluctuation (WLF) on phytoplankton biomass and then develop a quantitative model guiding effective phytoplankton blooms controlling based on water level regulations in reservoirs. Specifically, with 9-year continued daily observed data in the Three Gorges Reservoir, we examined the causal effects of different WLF parameters on the dynamics of phytoplankton blooms for the first time. We found that the water level change in the past 24 h (ΔWL) has the strongest causal effect on the daily dynamics of phytoplankton biomass among all WLF parameters (ΔWL, |ΔWL|, and the water level), with a time lag of 2 days. Moreover, EDM revealed a nonlinear relationship between ΔWL and daily dynamics of phytoplankton biomass and achieved a successful prediction for the chlorophyll a concentration 2-day ahead. Further scenario analyses found that both the rise and fall of water level will significantly reduce the chlorophyll a concentration when phytoplankton blooms occur. Nevertheless, on the whole, the rising water level has a more substantial effect on phytoplankton blooms than falling the water level. This result reveals that regulating ΔWL is a simple and effective approach in controlling phytoplankton blooms in reservoirs. Our study reported the nonlinear causal effect of ΔWL on the dynamics of chlorophyll a and provided a quantitative approach guiding effective phytoplankton blooms controlling based on the water level regulation, which might have a broad application in algal blooms controlling in reservoirs and similar waterbodies.


Assuntos
Ecossistema , Fitoplâncton , Clorofila A , Eutrofização , Humanos , Água
12.
Bioresour Technol ; 344(Pt B): 126260, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34728358

RESUMO

Fucoxanthin has multiple beneficial effects on human health. However, an efficient cultivation strategy for hyper-production of microalgae-based fucoxanthin has been seldom achieved. Here, an auto-controlled photobioreactor (PBR) installed internal light-emitting diodes illumination with adjustable spectra ratio was firstly used to culture Odontella aurita. The results showed that red light (RL) was more suitable for cell growth and fucoxanthin accumulation than blue light (BL) and white light. The biomass and fucoxanthin production were further promoted by optimizing the ratios of RL and BL, with 8:2 giving the highest productivities of 570 and 9.41 mg L-1 d-1, respectively, which is the highest fucoxanthin productivity ever reported under photoautotrophic cultivation. Pilot-scale cultivation demonstrated its promising feasibility in commercial fucoxanthin production. Our study represents a pioneering work of harnessing the PBR with internal illumination for hyper-production of microalgae-based fucoxanthin, and provides feasible strategies for high-efficient production of other value-added products in related species/strains.


Assuntos
Diatomáceas , Microalgas , Biomassa , Humanos , Luz , Fotobiorreatores , Xantofilas
13.
Sci Total Environ ; 813: 152566, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34952048

RESUMO

Knowledge of benthic diatom traits can help understand ecosystem function and guide biodiversity conservation. This is particularly important in rivers on which there are small run-of-river dams, which currently receive less attention. These dams generate power by drawing water from upstream and discharging it downstream after a large drop in penstock. We examine 15 functional diatom traits in habitats upstream, surrounding, and downstream of 23 small run-of-river dams in Xiangxi River, China. We compare the effects of these small dams on benthic diatom species traits, and taxonomic and functional diversity, from 90 sites. Dams change local environmental (e.g., channel width, flow velocity, depth) and physicochemical (e.g., dissolved oxygen, water temperature) variables, and a shift in diatom life forms and guilds is apparent, from taxa with strong attachment and low profile in high velocity waters (i.e., H1, H2 and H4) to those with weak attachment or that are planktonic below dams and outlets (i.e., H3 and H5), and towards high profile taxa below dams. Significant differences in biodiversity, particularly in functional richness, redundancy, and evenness, are apparent. Species and functional diversity indices are influenced by physical and chemical environmental factors (especially flow velocity and water depth). We found that diatom functional traits reflect longitudinal changes in flow and ecological condition, and suggest that monitoring such traits could be useful in adjusting flows to minimize ecosystem impacts. To maintain ecological flow and reasonable water depth within rivers we advocate for improved connectivity, carrying capacity and resilience of water ecosystems via a long-term, trait-based understanding of the impacts of small run-of-river dams.


Assuntos
Diatomáceas , Biodiversidade , Ecossistema , Monitoramento Ambiental , Rios , Água
14.
PeerJ ; 9: e12103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557354

RESUMO

Small waterbodies are a unique aquatic ecosystem with an increasing recognition for their important role in maintaining regional biodiversity and delivering ecosystem services. However, small waterbodies in Northwest Yunnan, one of the most concerned global biodiversity hot-spots, remain largely unknown. Here, we investigated the community structure of crustacean zooplankton and their relationships with limnological, morphometric and spatial variables in the highland small waterbodies in Northwest Yunnan in both the dry (October 2015) and rainy (June 2016) seasons. A total of 38 species of crustacean zooplankton were identified in our study, which is significantly higher than many other reported waterbodies in the Yunnan-Guizhou plateau as well as in the Yangtze River basin. This suggests that the highland small waterbodies are critical in maintaining regional zooplankton diversity in Northwest Yunnan. Meanwhile, we found limnological variables could explain most variation of crustacean zooplankton community, comparing to the morphometric and spatial variables in both the rainy and dry seasons. Our study revealed the diversity and community structure of crustacean zooplankton in the highland small waterbodies in Northwest Yunnan and highlighted the importance of small waterbodies in maintaining regional biodiversity.

15.
Sci Total Environ ; 800: 149404, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399334

RESUMO

The altitudinal distribution of biodiversity in alpine ecosystems has captured academic attention, especially in streams because of their sensitivity to climate change. In the past years, research mainly focused on understanding the role played by alpine streams' internal factors such as aquatic environmental variables, as well as physical and hydrological conditions, on the shaping of benthic macroinvertebrate communities. More recently, external factors such as terrestrial environments were included in analyses worldwide. In particular, the inherent properties constituting the ecological niche of specific species were considered as factors regulating dispersal and influencing community construction. The objective of this study was to reveal the distribution pattern and the driving factors regulating aquatic biodiversity in alpine streams. We hypothesized that the altitudinal distribution of aquatic macroinvertebrates could be explained by the interaction of the aquatic environment with both species' ecological niche and the terrestrial environment surrounding their habitat, and that rare species display a more pronounced pattern than widespread dominant species. To test these hypotheses, samples were collected from two alpine streams situated on opposite slopes of Biluo Snow Mountain in Yunnan Province, China. Results of statistical analyses showed poor explanatory power from aquatic environmental factors, while the differences in vegetation type and the ecological niche of the species played an important role in determining the distribution pattern of aquatic biodiversity. Furthermore, we found that the altitudinal distribution pattern of aquatic biodiversity exhibits a bimodal type, with rare species fitting the bimodal peaks. These findings call for a better inclusion and further investigation on the effects of the terrestrial environment on aquatic ecosystems.


Assuntos
Biodiversidade , Ecossistema , China , Mudança Climática , Rios
16.
Sci Total Environ ; 770: 145267, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33517016

RESUMO

As the main primary producer in stream ecosystems, periphyton is the fundamental of stream ecosystems and plays an essential role in maintaining stream biodiversity. The central Hengduan Mountains is one of the famous global biodiversity hotspots. However, for stream biodiversity conservations, the fundamental information about the spatial pattern of stream periphyton and the determining factors in this region remains largely unknown. To fill this gap, we investigated the spatial pattern of periphyton biomass (measured by chlorophyll a) in four typical streams in the central Hengduan Mountains and analyzed the driving factors, with the perspective of watershed land use and instream water quality. The results of our study found that farmland area, instream dissolved silicate (DSi), and water temperature (WT) had significant negative relationships with the stream periphyton biomass in the central Hengduan Mountains. However, the dissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN) had non-significant effects on the periphyton biomass in our study. Further analysis showed that the correlation between the ratio of farmland in the catchment and the DSi is non-significant (r = 0.028, P = 0.698), suggesting that the changes in farmland area will not affect the concentration of dissolved silicate in the stream. This reveals that the stream periphyton biomass was co-determined by the watershed farmland area and instream DSi and WT, but not nitrogen or phosphorus. These results highlight the importance of farmland management and instream DSi for stream ecosystems in the central Hengduan Mountains. Our study investigated the spatial pattern of the stream primary producer in the central Hengduan Mountains region and identified the main determining factors, which could improve our understanding of the high mountain stream ecosystems.


Assuntos
Rios , Qualidade da Água , China , Clorofila A , Ecossistema , Fazendas
17.
Sci Total Environ ; 760: 144045, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341625

RESUMO

The ability to prioritize habitats that have spatially varied contributions to species persistence can produce synergistic benefits for regional conservation efforts. However, conservation in spatially diverse landscape-networks requires considering dispersal asymmetry in the context of ecological connectivity and metapopulation persistence. By developing an approach based on metapopulation theory, this study prioritized the importance of habitat (as determined by the habitat quality and spatial position in networks) on metapopulation structure in mountainous streams. As a case study, we examined dispersal via overland and instream networks in a riverine mayfly Rhithrogena sp. cf. japonica in a mountain range of Southwest China. Compared to flow velocity, water depth, and instream nutrient-levels, water temperature was a key factor in determining local habitat suitability for R. sp. cf. japonica. Higher water temperature was linked to poor habitat suitability. Instream pathways were the main dispersal corridors compared with overland movement between tributaries for this mayfly. In basins on the east aspect of this mountain range, either monotonically increasing (i.e., never decreasing) or unimodal (i.e., with a single peak) patterns demonstrated the importance of riverine habitats that occur along elevational gradients. However, the importance of habitat appeared to show no definite patterns with elevation on the west aspect. In terms of metapopulation structure, local quality of habitat contributed more to the regional importance of habitat than its spatial position in the networks. The framework presented highlights that the importance of riverine habitats may be quite variable in species having directional dispersal networks across the fluvial landscape in mountainous areas. Results from this framework can serve as the basis to apply a mechanistic understanding to managing and protecting native populations through regional restoration actions.


Assuntos
Ephemeroptera , Rios , Animais , China , Ecossistema , Modelos Biológicos
18.
Sci Total Environ ; 743: 140548, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758813

RESUMO

Stochastic (e.g., via species dispersal and ecological drift) and deterministic (e.g., via environmental and biotic filtering) processes can produce diversity patterns related to changes in elevation. However, existing studies have not generally examined these processes within a compressive framework. Stream macroinvertebrates are an important and diverse component of freshwater environments in high-mountain systems. By considering metacommunity-structuring processes using Hierarchical Modelling of Species Communities (HMSC), we investigated changes in taxon richness of stream macroinvertebrates along elevational gradients in streams of the Cangshan mountain range in Southwest China. We found that increasing taxon richness along the elevation gradient until the optimum was reached could be modeled using the integrated actions of full structuring processes within the metacommunity modeling. Consistent increases in taxon-richness along the elevation gradient were able to be modeled considering environmental filtering alone. In addition, the importance of structuring processes on shaping communities decreased along spatial hierarchical-scales (from local habitat to mountain-aspect levels). These results suggest that stochastic and biotic-filtering processes can confound environmental filtering in shaping macroinvertebrate communities in high-mountain streams. A comprehensive understanding of the mechanisms underlying elevational biodiversity patterns of riverine communities can be improved through quantitative frameworks (e.g., HMSC) linking metacommunity theory to the real-world systems.


Assuntos
Biodiversidade , Ecossistema , China
19.
Sci Rep ; 7(1): 4134, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646233

RESUMO

Although human disturbance indirectly influences lotic assemblages through modifying physical and chemical conditions, identifying thresholds of human disturbance would provide direct evidence for preventing anthropogenic degradation of biological conditions. In the present study, we used data obtained from tributaries of the Three Gorges Reservoir in China to detect effects of human disturbance on streams and to identify disturbance thresholds for benthic diatoms. Diatom species composition was significantly affected by three in-stream stressors including TP, TN and pH. Diatoms were also influenced by watershed % farmland and natural environmental variables. Considering three in-stream stressors, TP was positively influenced by % farmland and % impervious surface area (ISA). In contrast, TN and pH were principally affected by natural environmental variables. Among measured natural environmental variables, average annual air temperature, average annual precipitation, and topsoil % CaCO3, % gravel, and total exchangeable bases had significant effects on study streams. When effects of natural variables were accounted for, substantial compositional changes in diatoms occurred when farmland or ISA land use exceeded 25% or 0.3%, respectively. Our study demonstrated the rationale for identifying thresholds of human disturbance for lotic assemblages and addressed the importance of accounting for effects of natural factors for accurate disturbance thresholds.


Assuntos
Diatomáceas , Ecossistema , Meio Ambiente , Atividades Humanas , China , Geografia , Humanos
20.
Zootaxa ; 4098(3): 571-81, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27394602

RESUMO

Lamelligomphus annakarlorum sp. nov. is described based on specimens collected from southern Yunnan Province, China (holotype male: Xishuangbanna National Nature Reserve, 21°57'59''N, 101°12'37''E, Xishuangbanna Dai Autonomous Prefecture, Yunnan Province, China). All type specimens of the new species have been deposited in the Collection of Aquatic Animals, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan City, Hubei Province, China. It is compared with Lamelligomphus camelus (Martin, 1904), which shares some similar characters.


Assuntos
Odonatos/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , China , Feminino , Masculino , Odonatos/anatomia & histologia , Odonatos/crescimento & desenvolvimento , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA