Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(28): 18393-18404, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38956949

RESUMO

Sequential infiltration synthesis (SIS), also known as vapor phase infiltration (VPI), is a quickly expanding technique that allows growth of inorganic materials within polymers from vapor phase precursors. With an increasing materials library, which encompasses numerous organometallic precursors and polymer chemistries, and an expanding application space, the importance of understanding the mechanisms that govern SIS growth is ever increasing. In this work, we studied the growth of polycrystalline ZnO clusters and particles in three representative polymers: poly(methyl methacrylate), SU-8, and polymethacrolein using vapor phase diethyl zinc and water. Utilizing two atomic resolution methods, high-resolution scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy, we probed the evolution of ZnO nanocrystals size and crystallinity level inside the polymers with advancing cycles─from early nucleation and growth after a single cycle, through the formation of nanometric particles within the films, and to the coalescence of the particles upon polymer removal and thermal treatment. Through in situ Fourier transform infrared spectroscopy and microgravimetry, we highlight the important role of water molecules throughout the process and the polymers' hygroscopic level that leads to the observed differences in growth patterns between the polymers, in terms of particle size, dispersity, and the evolution of crystalline order. These insights expand our understanding of crystalline materials growth within polymers and enable rational design of hybrid materials and polymer-templated inorganic nanostructures.

2.
Chemistry ; 26(39): 8588-8596, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32187750

RESUMO

Two novel bipolar deep-blue fluorescent emitters, IP-PPI and IP-DPPI, featuring different lengths of the phenyl bridge, were designed and synthesized, in which imidazo[1,2-a]pyridine (IP) and phenanthroimidazole (PI) were proposed as an electron acceptor and an electron donor, respectively. Both of them exhibit outstanding thermal stability and high emission quantum yields. All the devices based on these two materials showed negligible efficiency roll-off with increasing current density. Impressively, non-doped organic light-emitting diodes (OLEDs) based on IP-PPI and IP-DPPI exhibited external quantum efficiencies (EQEs) of 4.85 % and 4.74 % with CIE coordinates of (0.153, 0.097) and (0.154, 0.114) at 10000 cd m-2 , respectively. In addition, the 40 wt % IP-PPI doped device maintained a high EQE of 5.23 % with CIE coordinates of (0.154, 0.077) at 10000 cd m-2 . The doped device based on 20 wt % IP-DPPI exhibited a higher deep-blue electroluminescence (EL) performance with a maximum EQE of up to 6.13 % at CIE of (0.153, 0.078) and maintained an EQE of 5.07 % at 10000 cd m-2 . To the best of our knowledge, these performances are among the state-of-the art devices with CIEy ≤0.08 at a high brightness of 10000 cd m-2 . Furthermore, by doping a red phosphorescent dye Ir(MDQ)2 (MDQ=2-methyldibenzo[f,h]quinoxaline) into the IP-PPI and IP-DPPI hosts, high-performance red phosphorescent OLEDs with EQEs of 20.8 % and 19.1 % were achieved, respectively. This work may provide a new approach for designing highly efficient deep-blue emitters with negligible roll-off for OLED applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA