Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Cancer Res ; 14(2): 562-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455403

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

2.
PNAS Nexus ; 2(3): pgad056, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970182

RESUMO

For its size, the brain is the most metabolically active organ in the body. Most of its energy demand is used to maintain stable homeostatic physiological conditions. Altered homeostasis and active states are hallmarks of many diseases and disorders. Yet there is currently no direct and reliable method to assess homeostasis and absolute basal activity of cells in the tissue noninvasively without exogenous tracers or contrast agents. We propose a novel low-field, high-gradient diffusion exchange nuclear magnetic resonance (NMR) method capable of directly measuring cellular metabolic activity via the rate constant for water exchange across cell membranes. Exchange rates are 140 ± 16 s - 1 under normal conditions in viable ex vivo neonatal mouse spinal cords. High repeatability across samples suggest that values are absolute and intrinsic to the tissue. Using temperature and drug (ouabain) perturbations, we find that the majority of water exchange is metabolically active and coupled to active transport by the sodium-potassium pump. We show that this water exchange rate is sensitive primarily to tissue homeostasis and provides distinct functional information. In contrast, the apparent diffusion coefficient (ADC) measured with submillisecond diffusion times is sensitive primarily to tissue microstructure but not activity. Water exchange appears independently regulated from microstructural and oxygenation changes reported by ADC and T 1 relaxation measurements in an oxygen-glucose deprivation model of stroke; exchange rates remain stable for 30-40 min before dropping to levels similar to the effect of ouabain and never completely recovering when oxygen and glucose are restored.

3.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789415

RESUMO

Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.

4.
Front Phys ; 102022.
Artigo em Inglês | MEDLINE | ID: mdl-37063496

RESUMO

Diffusion exchange spectroscopy (DEXSY) is a multidimensional NMR technique that can reveal how water molecules exchange between compartments within heterogeneous media, such as biological tissue. Data from DEXSY experiments is typically processed using numerical inverse Laplace transforms (ILTs) to produce a diffusion-diffusion spectrum. A tacit assumption of this ILT approach is that the signal behavior is Gaussian - i.e., the spin echo intensity decays exponentially with the degree of diffusion weighting. The assumptions that underlie Gaussian signal behavior may be violated, however, depending on the gradient strength applied and the sample under study. We argue that non-Gaussian signal behavior due to restrictions is to be expected in the study of biological tissue using diffusion NMR. Further, we argue that this signal behavior can produce confounding features in the diffusion-diffusion spectra obtained from numerical ILTs of DEXSY data - entangling the effects of restriction and exchange. Specifically, restricted signal behavior can result in broadening of peaks and in the appearance of illusory exchanging compartments with distributed diffusivities, which pearl into multiple peaks if not highly regularized. We demonstrate these effects on simulated data. That said, we suggest the use of features in the signal acquisition domain that can be used to rapidly probe exchange without employing an ILT. We also propose a means to characterize the non-Gaussian signal behavior due to restrictions within a sample using DEXSY measurements with a near zero mixing time or storage interval. We propose a combined acquisition scheme to independently characterize restriction and exchange with various DEXSY measurements, which we term Restriction and Exchange from Equally-weighted Double and Single Diffusion Encodings (REEDS-DE). We test this method on ex vivo neonatal mouse spinal cord - a sample consisting primarily of gray matter - using a low-field, static gradient NMR system. In sum, we highlight critical shortcomings of prevailing DEXSY analysis methods that conflate the effects of restriction and exchange, and suggest a viable experimental approach to disentangle them.

5.
J Chem Phys ; 154(11): 111105, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752346

RESUMO

Time-dependent diffusion behavior is probed over sub-millisecond timescales in a single shot using a nuclear magnetic resonance static gradient time-incremented echo train acquisition (SG-TIETA) framework. The method extends the Carr-Purcell-Meiboom-Gill cycle under a static field gradient by discretely incrementing the π-pulse spacings to simultaneously avoid off-resonance effects and probe a range of timescales (50-500 µs). Pulse spacings are optimized based on a derived ruleset. The remaining effects of pulse inaccuracy are examined and found to be consistent across pure liquids of different diffusivities: water, decane, and octanol-1. A pulse accuracy correction is developed. Instantaneous diffusivity, Dinst(t), curves (i.e., half of the time derivative of the mean-squared displacement in the gradient direction) are recovered from pulse accuracy-corrected SG-TIETA decays using a model-free log-linear least squares inversion method validated by Monte Carlo simulations. A signal-averaged 1-min experiment is described. A flat Dinst(t) is measured on pure dodecamethylcyclohexasiloxane, whereas decreasing Dinst(t) is measured on yeast suspensions, consistent with the expected short-time Dinst(t) behavior for confining microstructural barriers on the order of micrometers.

6.
Biophys J ; 119(12): 2378-2390, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189686

RESUMO

We have developed a novel, to our knowledge, in vitro instrument that can deliver intermediate-frequency (100-400 kHz), moderate-intensity (up to and exceeding 6.5 V/cm pk-pk) electric fields (EFs) to cell and tissue cultures generated using induced electromagnetic fields (EMFs) in an air-core solenoid coil. A major application of these EFs is as an emerging cancer treatment modality. In vitro studies by Novocure reported that intermediate-frequency (100-300 kHz), low-amplitude (1-3 V/cm) EFs, which they called "tumor-treating fields (TTFields)," had an antimitotic effect on glioblastoma multiforme (GBM) cells. The effect was found to increase with increasing EF amplitude. Despite continued theoretical, preclinical, and clinical study, the mechanism of action remains incompletely understood. All previous in vitro studies of "TTFields" have used attached, capacitively coupled electrodes to deliver alternating EFs to cell and tissue cultures. This contacting delivery method suffers from a poorly characterized EF profile and conductive heating that limits the duration and amplitude of the applied EFs. In contrast, our device delivers EFs with a well-characterized radial profile in a noncontacting manner, eliminating conductive heating and enabling thermally regulated EF delivery. To test and demonstrate our system, we generated continuous, 200-kHz EMF with an EF amplitude profile spanning 0-6.5 V/cm pk-pk and applied them to exemplar human thyroid cell cultures for 72 h. We observed moderate reduction in cell density (<10%) at low EF amplitudes (<4 V/cm) and a greater reduction in cell density of up to 25% at higher amplitudes (4-6.5 V/cm). Our device can be readily extended to other EF frequency and amplitude regimes. Future studies with this device should contribute to the ongoing debate about the efficacy and mechanism(s) of action of "TTFields" by better isolating the effects of EFs and providing access to previously inaccessible EF regimes.


Assuntos
Terapia por Estimulação Elétrica , Glioblastoma , Condutividade Elétrica , Campos Eletromagnéticos , Glioblastoma/terapia , Humanos
7.
J Magn Reson ; 317: 106782, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679514

RESUMO

Diffusion exchange spectroscopy (DEXSY) provides a means to isolate the signal attenuation associated with exchange from other sources of signal loss. With the total diffusion weighting b1+b2=bs held constant, DEXSY signals acquired with b1=0 or b2=0 have no exchange weighting, while a DEXSY signal acquired with b1=b2 has maximal exchange weighting. The exchange rate can be estimated by fitting a diffusion exchange model to signals acquired with variable mixing times. Conventionally, acquired signals are normalized by a signal with b1=0 and b2=0 to remove the decay due to spin-lattice relaxation. Instead, division by a signal with equal bs but b1=0 or b2=0 reduces spin-lattice relaxation weighting of the apparent exchange rate (AXR). Furthermore, apparent diffusion-weighted R1 relaxation rates can be estimated from non-exchange-weighted DEXSY signals. Estimated R1 values are utilized to remove signal decay due to spin-lattice relaxation from exchange-weighted signals, permitting a more precise estimate of AXR with less data. Data reduction methods are proposed and tested with regards to statistical accuracy and precision of AXR estimates on simulated and experimental data. Simulations show that the methods are capable of accurately measuring the ground-truth exchange rate. The methods remain accurate even when the assumption that DEXSY signals attenuate with b is violated, as occurs for restricted diffusion. Experimental data was collected from fixed neonatal mouse spinal cord samples at 25 and 7°C using the strong static magnetic field gradient produced by a single-sided permanent magnet (i.e., an NMR MOUSE). The most rapid method for exchange measurements requires only five data points (an 80 s experiment as implemented) and achieves a similar level of accuracy and precision to the baseline method using 44 data points. This represents a significant improvement in acquisition speed, overcoming a barrier which has limited the use of DEXSY on living specimen.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Medula Espinal/metabolismo , Animais , Animais Recém-Nascidos , Meios de Contraste/química , Difusão , Desenho de Equipamento , Gadolínio DTPA/química , Técnicas In Vitro , Espectroscopia de Ressonância Magnética/instrumentação , Camundongos , Sensibilidade e Especificidade , Água/química
8.
Elife ; 82019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31829935

RESUMO

We develop magnetic resonance (MR) methods for real-time measurement of tissue microstructure and membrane permeability of live and fixed excised neonatal mouse spinal cords. Diffusion and exchange MR measurements are performed using the strong static gradient produced by a single-sided permanent magnet. Using tissue delipidation methods, we show that water diffusion is restricted solely by lipid membranes. Most of the diffusion signal can be assigned to water in tissue which is far from membranes. The remaining 25% can be assigned to water restricted on length scales of roughly a micron or less, near or within membrane structures at the cellular, organelle, and vesicle levels. Diffusion exchange spectroscopy measures water exchanging between membrane structures and free environments at 100 s-1.


Assuntos
Membrana Celular/ultraestrutura , Imagem de Difusão por Ressonância Magnética/métodos , Membranas Intracelulares/ultraestrutura , Espectroscopia de Ressonância Magnética/métodos , Medula Espinal/ultraestrutura , Potenciais de Ação , Animais , Animais Recém-Nascidos , Anisotropia , Células do Corno Anterior/fisiologia , Água Corporal , Detergentes/farmacologia , Deutério , Difusão , Imagem de Difusão por Ressonância Magnética/instrumentação , Desenho de Equipamento , Espectroscopia de Ressonância Magnética/instrumentação , Lipídeos de Membrana/química , Camundongos , Movimento (Física) , Octoxinol/farmacologia , Medula Espinal/efeitos dos fármacos
9.
J Magn Reson ; 297: 17-22, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30340203

RESUMO

Diffusion exchange spectroscopy (DEXSY) provides a detailed picture of how fluids in different microenvironments communicate with one another but requires a large amount of data. For DEXSY MRI, a simple measure of apparent exchanging fractions may suffice to characterize and differentiate materials and tissues. Reparameterizing signal intensity from a PGSE-storage-PGSE experiment as a function of the sum, bs=b1+b2, and difference bd=b2-b1 of the diffusion encodings separates diffusion weighting from exchange weighting. Exchange leads to upward curvature along a slice of constant bs. Exchanging fractions can be measured rapidly by a finite difference approximation of the curvature using four data points. The method is generalized for non-steady-state and multi-site exchange. We apply the method to image exchanging fractions and calculate exchange rates of water diffusing across the bulk water interface of a glass capillary array.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA