Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 75-82, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38705114

RESUMO

Photocatalytic nitrogen fixation is seen to be a potential technology for nitrogen reduction due to its eco-friendliness, low energy consumption, and environmental protection. In this study, photocatalysts with abundant oxygen vacancies (Zr-naphthalene dicarboxylic acid (Zr-NDC) and Zr-phthalic acid (Zr-BDC)) were designed using 1,4-naphthalene dicarboxylic acid (H2NDC) and 1,4-phthalic acid (H2BDC) as ligands. Since the structure of H2NDC includes one extra benzene ring than H2BDC, the charge density differential of the organic ligand is probably altered. The hypothesis is proved by density function theory (DFT) calculation. The abundant oxygen vacancies of the catalyst offer numerous active sites for nitrogen fixation. Concurrently, the process of ligand-metal charge transfer facilitates photo-electron transfer, creating an active center for nitrogen reduction. Additionally, the functionalization of ligand amplifies another pathway for charge transfer, broadening the light absorption range of Metal-organic framework (MOF) and increasing its capacity for nitrogen reduction. In contrast to H2BDC, the benzene ring added in H2NDC structure acts as an electron energy storage tank with a stronger electron density difference favorable for photogenerated electron-hole separation resulting in higher photocatalytic activity in Zr-NDC. The experimental results show that the nitrogen fixation efficiency of Zr-NDC is 163.7 µmol g-1h-1, which is significantly better than that of Zr-BDC (29.3 µmol g-1h-1). This work utilizes cost-effective and non-toxic ingredients to design highly efficient photocatalysts, thereby significantly contributing to the practical implementation of green chemistry principles.

2.
Analyst ; 139(21): 5509-15, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25192200

RESUMO

Photodegradation of organic dye molecules has attracted extensive attention because of their high toxicity to water resources. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more sensitively the catalytic degradation process occurring on the surface of the catalysts. In this paper, we report the synthesis and structure of Fe3O4@SiO2@TiO2@Ag composite, which integrates SERS active Ag nanostructure with catalytically active titania. The degradation of the typical dye molecule crystal violet (CV), as an example, is investigated in the presence of the as-prepared Fe3O4@SiO2@TiO2@Ag composite structure, which exhibits high catalytic activity and good SERS performance. At the same time, renewable photocatalytic activity was also investigated.

3.
Nanoscale ; 6(15): 8612-6, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24980245

RESUMO

Investigating the kinetics of catalytic reactions with surface-enhanced Raman scattering (SERS) on a single particle remains a significant challenge. In this study, the single particle of the constructed hierarchical peony-like silver microflowers (SMFs) with highly roughened surface led to the coupling of high catalytic activity with a strong SERS effect, which acts as an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. The kinetics of the reaction of 4-nitrothiophenol (4-NTP) dimerizing into 4,4'-dimercaptoazobenzene (DMAB) was investigated and comparatively studied by using the SERS technique on a single particle of different morphologies of SMFs. The results indicate that a fully developed nanostructure of a hierarchical SMF has both larger SERS enhancement and apparent reaction rate constant k, which may be useful for monitoring and understanding the mechanism of plasmon-driven surface catalyzed reactions.

4.
Nanoscale ; 6(14): 7954-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24903915

RESUMO

In this study, multifunctional Fe3O4/C/Au nanoparticles (NPs), which catalytically integrated active small Au NPs with surface-enhanced Raman scattering (SERS) active large Au NPs, were fabricated via a facile method and employed for the in situ SERS monitoring of a catalytic reaction of p-nitrothiophenol (p-NTP) to p-aminothiophenol (p-ATP). In addition, the effect of magnet power was tested and it was demonstrated that the SERS intensity of the reaction system was stronger, and the reaction proceeded more smoothly because more hot spots existed and remained the same in the magnetic field; hence, the catalytic rate could be determined.

5.
Nanoscale ; 5(22): 11193-9, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24080958

RESUMO

Here, Au nanoparticles (NPs) grafted on dendritic α-Fe2O3 (NPGDF) are designed as a highly uniform surface-enhanced Raman scattering (SERS) substrate with a feature of optical visualization by an optical microscope (OM) system and used for in situ detection of pesticide residues that are annually used in agriculture. With this strategy, the dendritic α-Fe2O3 has been synthesized by a hydrothermal method and significantly functionalized by an inductively coupled plasma (ICP) apparatus and then Au NPs were grafted on it densely and uniformly. In addition, the profile of NPGDF can be clearly observed using an OM platform of a Raman spectrometer, and the profile of SERS spectral mapping with NPGDF as substrate almost exactly coincides with the OM image, the electron microscope (EM) image and the elemental mapping of NPGDF, which indicates remarkable uniformity of the NPGDF as SERS substrate, thus ensuring the laser beam focuses on the efficient sites of the substrate under the OM platform. Moreover, NPGDF can be dispersed in the liquor and the NPGDF microparticles can be adsorbed on the target surface. Therefore, it can be used for in situ detection of pesticide residues on tea leaves, fruits etc., with high sensitivity and reproducibility.


Assuntos
Dendrímeros/química , Compostos Férricos/química , Ouro/química , Nanopartículas Metálicas/química , Praguicidas/análise , Análise Espectral Raman , Camellia sinensis/química , Camellia sinensis/metabolismo , Frutas/química , Frutas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA