Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 171, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491219

RESUMO

A Gram-negative, facultatively anaerobic, short rod-shaped bacterium, designated as strain HZ0627T, was isolated from the appendiceal pus of a patient with appendicitis in Yongzhou, Hunan, China. This strain was subjected to comprehensive phenotypic, phylogenetic, and genomic analyses using polyphasic taxonomic methods. Phylogenetic analysis of the 16S rRNA gene sequence revealed that this strain belonged to the genus Proteus and the family Morganellaceae, whereas that based on the rpoB gene sequence and phylogenomic analysis demonstrated that this strain was distinctly separated from other type strains of Proteus species. Moreover, whole-genome-based analyses, including in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI), revealed that strain HZ0627T had much lower isDDH rates (24.5-55.6%) and ANI (82.04-93.90%) than those of the thresholds (i.e., 70% and 95%, respectively) for species delineation, when compared to the type strains of other Proteus species. The cellular fatty acid profile of strain HZ0627T was dominated by C16:0 (34.5%), cyclo C17:0 (25.8%), C14:0 (12.6%), C16:1 iso I/14:0 3-OH (7.7%), C18:1ω7c/18:1ω6c (6.5%), and C16:1ω7c/16:1ω6c (4.9%), which clearly differentiated it from the documented type strains of Proteus species. In addition, several specific physiological traits, including optimal growth temperature, tolerance to sodium chloride, and carbon source utilization, differed from those of other Proteus species. Therefore, we propose the name Proteus appendicitidis sp. nov. for strain HZ0627T (= CCTCC AB 2022380T = KCTC 92986T), which represents the type strain of this novel Proteus species.


Assuntos
Apendicite , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Proteus/genética , Ácidos Graxos/análise , China , DNA , Supuração , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
2.
Apoptosis ; 29(3-4): 331-343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37848671

RESUMO

Tumor immune escape is an important manner for colon cancer to escape effective killing by immune system. Currently, the immune checkpoint PD-1/PD-L1-targeted immunotherapy has emerged as a promising therapeutic strategy in colon cancer. Here, present work aims to investigate the biological function of N6-methyladenosine (m6A) reader insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in regulating colon cancer's immune escape and CD8 + T cells-mediated tumor cytotoxicity and apoptosis. Results illustrated that IGF2BP1 was closely correlated to the colon cancer patients' poor clinical outcome. Functionally, upregulation of IGF2BP1 suppressed the CD8+ T-cells mediated antitumor immunity through reducing their tumor cytotoxicity. Mechanistically, MeRIP-Seq revealed that programmed death ligand 1 (PD-L1) mRNA had a remarkable m6A modified site on 3'-UTR genomic. Moreover, PD-L1 acted as the target of IGF2BP1, which enhanced the stability of PD-L1 mRNA. Overall, these results indicated that IGF2BP1 targeted PD-L1 to accelerate the immune escape in colon cancer by reducing CD8 + T cells-mediated tumor cytotoxicity in m6A-dependent manner. The findings demonstrate the potential of m6A-targeted immune checkpoint blockade in colon cancer, providing a novel insight for colon cancer immune escape and antitumor immunity in further precise treatment.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias do Colo , Humanos , Linfócitos T CD8-Positivos/metabolismo , Antígeno B7-H1/genética , Apoptose/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , RNA Mensageiro/metabolismo
3.
Front Microbiol ; 14: 1293206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029151

RESUMO

Paraclostridium bifermentans (P.b) is an emerging human pathogen that is phylogenomically close to Paeniclostridium sordellii (P.s), while their populational genomic features and virulence capacity remain understudied. Here, we performed comparative genomic analyses of P.b and compared their pan-genomic features and virulence coding profiles to those of P.s. Our results revealed that P.b has a more plastic pangenome, a larger genome size, and a higher GC content than P.s. Interestingly, the P.b and P.s share similar core-genomic functions, but P.b encodes more functions in nutrient metabolism and energy conversion and fewer functions in host defense in their accessory-genomes. The P.b may initiate extracellular infection processes similar to those of P.s and Clostridium perfringens by encoding three toxin homologs (i.e., microbial collagenase, thiol-activated cytolysin, phospholipase C, which are involved in extracellular matrices degradation and membrane damaging) in their core-genomes. However, P.b is less toxic than the P.s by encoding fewer secretion toxins in the core-genome and fewer lethal toxins in the accessory-genome. Notably, P.b carries more toxins genes in their accessory-genomes, particularly those of plasmid origin. Moreover, three within-species and highly conserved plasmid groups, encoding virulence, gene acquisition, and adaptation, were carried by 25-33% of P.b strains and clustered by isolation source rather than geography. This study characterized the pan-genomic virulence features of P.b for the first time, and revealed that P. bifermentans is an emerging pathogen that can threaten human health in many aspects, emphasizing the importance of phenotypic and genomic characterizations of in situ clinical isolates.

4.
J Glob Antimicrob Resist ; 35: 268-270, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866682

RESUMO

OBJECTIVES: Prevotella bivia is a species that commonly colonizes various human body sites, and it is associated with lots of human infections. However, until now, no complete genome sequence of this species has been published. Here, we assembled the first complete genome of P. bivia from a clinically derived strain PLW0727, to characterize its general genomic features, and to profile the capacity in encoding antibiotic resistance and virulence factors. METHODS: Whole-genome sequencing was performed using Illumina and Nanopore platforms. Hybrid assembly was conducted using flye v2.9.1 and Unicycler v0.4.9b. Assembly completeness was assessed using CheckM v1.0.12. Comprehensive genome annotation was performed using eggNOG-mapper v2.1.5 and PATRIC v3.6.10. RESULTS: The complete genome of PLW0727 consists of two circular chromosomes, chr1 and chr2, exhibiting a completeness of 99.66%, a G+C content of 39.5%, and a total size of 2.43 Mb. Chr1 and chr2 have lengths of 1 272 652 bp and 1 155 021 bp, harbouring 1 132 CDSs and 1 055 CDSs, respectively. Completion of the genome significantly reduced the proportion of hypothetical CDS annotations compared with the draft genomes. A gene-encoding antibiotic resistance to beta-lactams (i.e., cfxA3) has been annotated in chr2. By providing the genome sequence, strain PLW0727 was identified as a human pathogen with a probability of 0.614 using the PathogenFinder. Furthermore, genes involved in virulence-related functions, including host cell adherence and capsule immune modulation were also annotated. CONCLUSIONS: This study assembles the first complete genome for P. bivia, providing valuable genomic insights into its phylogeny, pathogenicity, and antibiotic resistance. These findings have important implications for the clinical management and prevention of P. bivia infections.


Assuntos
Genoma Bacteriano , Prevotella , Humanos , Prevotella/genética , Sequenciamento Completo do Genoma , Genômica
5.
Eur J Med Res ; 28(1): 313, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660138

RESUMO

Gallstone disease is a prevalent biliary disease worldwide, and bacteria play vital roles in the disease development and progression, as well as the prognosis after endoscopic surgery. However, there have been limited studies to explore the key taxa involved. In this study, bile samples from healthy controls (HCs, liver donors without hepatobiliary disease) and three diseased groups, namely patients with gallbladder stones (GBS), patients with common bile duct stones (CBDS), and patients with stricture in the common bile duct (SCBD), were collected and analyzed. Bacterial community characterization based on 16S rRNA amplicon sequencing showed that bacterial diversities did not change significantly alongside gallstone disease development and progression. The predominant phyla in each group were Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota, representing over 80% in abundance of the biliary bacteria community. Specifically, the abundance of Proteobacteria decreased greatly while that of Firmicutes and Bacteroidota increased greatly in the diseased groups when compared to that in HCs. Moreover, linear discriminant analysis identified several genera highly represented in the diseased groups. Among them, Klebsiella, Prevotella, Pseudomonas and Veillonella are persistent in both the HCs group and the diseased groups, indicating an enrichment of local bile bacteria in the diseased bile; while Lachnoanerobaculum, Atopobium, Oribacterium, and Stomatobaculum, those aligned to oral cavity taxa, are persistent in the diseased groups but are transient in the HCs group, and their abundances sequentially increased with the disease development and progression (HCs→GBS→CBDS→SCBD), implying a translocation and colonization of the oral cavity bacteria in the diseased bile. Moreover, co-occurrence network analysis revealed that bacterial infection (e.g., Photobacterium and Plesiomonas) from the intestine was developed during endoscopic surgery with reduced bile bacteria diversity. The results of this study revealed that the bile bacterial community is relatively stable and dominated by a few persistent taxa. Moreover, we hypothesized that translocation and colonization of specific bacteria from the oral cavity happens alongside gallstone disease development and progression, and bacterial infection from the intestinal tract results in poor outcomes after endoscopic surgery.


Assuntos
Cálculos Biliares , Humanos , Cálculos Biliares/cirurgia , Bile , RNA Ribossômico 16S , Bactérias/genética , Constrição Patológica , Progressão da Doença
6.
BMC Microbiol ; 23(1): 247, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37661264

RESUMO

Bacteria abundance alternation in the feces or mucosa of Crohn's disease (CD) patients has long been applied to identify potential biomarkers for this disease, while the taxa occurrence frequency and their correlations with clinical traits were understudied. A total of 97 samples from the feces and gut mucosa were collected from CD patients and healthy controls (HCs), 16S rRNA-based analyses were performed to determine the changes in taxa abundance and occurrence frequency along CD and to correlate them with clinical traits. The results showed that bacteria communities were divergent between feces and mucosa, while the taxa abundance and occurrence frequency in both partitions showed similar exponential correlations. The decrease of specific fecal bacteria was much more effective in classifying the CD and HCs than that of the mucosal bacteria. Among them, Christensenellaceae_R-7_group and Ruminococcus were predicted as biomarkers by using random forest algorithm, which were persistently presented (> 71.40% in frequency) in the feces of the HCs with high abundance, whereas transiently presented in the feces (< 5.5% in frequency) and mucosa (< 18.18% in frequency) of CD patients with low abundance. Co-occurrence network analysis then identified them as hub taxa that drive the alternations of other bacteria and were positively correlated to the circuiting monocytes. The loss of specific bacteria in the healthy gut may cause great disturbance of gut microbiota, causing gut bacteria dysbiosis and correlated to immune disorders along CD, which might not only be developed as effective noninvasive biomarkers but also as therapy targets.


Assuntos
Doença de Crohn , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Clostridiales , Disbiose
7.
Front Cell Infect Microbiol ; 13: 1145791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274313

RESUMO

With the development of endoscopic technology, an increasing number of patients with esophageal disease are being diagnosed, although the underlying pathogenesis of many esophageal diseases remains unclear. In recent years, a large number of studies have demonstrated that the occurrence and development of various intestinal diseases were related to intestinal flora. As a result, researchers have shifted their focus towards investigating esophageal flora to better understand the pathogenesis, early diagnosis, and treatment of esophageal diseases. This paper reviewed the normal esophageal flora and the changes of esophageal flora under different esophageal disease states. It was observed that there are distinct differences in the composition of esophageal microflora among Gastroesophageal Reflux, Barrett's esophagus, eosinophilic esophagitis and normal esophagus. The normal esophageal flora was dominated by gram-positive bacteria, particularly Streptococcus, while the esophageal flora under esophagitis was dominated by gram-negative bacteria. Furthermore, the diversity of esophageal flora is significantly decreased in patients with esophageal cancer. Several potential microbial biomarkers for esophageal cancer have been identified, among which Fusobacterium nucleatum showed a close association with esophageal squamous cell carcinoma's pathological stage and clinical stage.


Assuntos
Esôfago de Barrett , Doenças do Esôfago , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Esôfago de Barrett/complicações , Esôfago de Barrett/epidemiologia , Esôfago de Barrett/patologia , Doenças do Esôfago/complicações
8.
Front Microbiol ; 14: 1147469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152761

RESUMO

Background: Winkia neuii, previously known as Actinomyces neuii, is increasingly recognized as a causative agent of various human infections, while its taxonomy and genomic insights are still understudied. Methods: A Winkia strain NY0527 was isolated from the hip abscess of a patient, and its antibiotic susceptibility was assessed. The genome was hybrid assembled from long-reads and short-reads sequencing. Whole-genome-based analyses on taxa assignment, strain diversity, and pathogenesis were conducted. Results: The strain was found to be highly susceptible to beta-lactam antibiotics, but resistant to erythromycin, clindamycin, and amikacin. The complete genome sequences of this strain were assembled and found to consist of a circular chromosome and a circular plasmid. Sequence alignment to the NCBI-nt database revealed that the plasmid had high sequence identity (>90%) to four Corynebacterium plasmids, with 40-50% query sequence coverage. Furthermore, the plasmid was discovered to possibly originate from the sequence recombination events of two Corynebacterium plasmid families. Phylogenomic tree and genomic average nucleotide identity analyses indicated that many Winkia sp. strains were still erroneously assigned as Actinomyces sp. strains, and the documented subspecies within W. neuii should be reclassified as two separate species (i.e., W. neuii and W. anitratus). The core genome of each species carried a chromosome-coded beta-lactamase expression repressor gene, which may account for their broadly observed susceptibility to beta-lactam antibiotics in clinical settings. Additionally, an ermX gene that expresses fluoroquinolone resistance was shared by some W. neuii and W. anitratus strains, possibly acquired by IS6 transposase-directed gene transfer events. In contrast, tetracycline resistance genes were exclusively carried by W. neuii strains. In particular, W. neuii was found to be more pathogenic than W. anitratus by encoding more virulence factors (i.e., 35-38 in W. neuii vs 27-31 in W. anitratus). Moreover, both species encoded two core pathogenic virulence factors, namely hemolysin and sialidase, which may facilitate their infections by expressing poreformation, adhesion, and immunoglobulin deglycosylation activities. Conclusion: This study highlights the underappreciated taxonomic diversity of Winkia spp. and provides populational genomic insights into their antibiotic susceptibility and pathogenesis for the first time, which could be helpful in the clinical diagnosis and treatment of Winkia spp. infections.

9.
Front Endocrinol (Lausanne) ; 14: 1085041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824355

RESUMO

Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Colina/metabolismo , Metilaminas
10.
Front Microbiol ; 13: 955249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110297

RESUMO

Microbial bromate reduction plays an important role in remediating bromate-contaminated waters as well as biogeochemical cycling of bromine. However, little is known about the molecular mechanism of microbial bromate reduction so far. Since the model strain Shewanella oneidensis MR-1 is capable of reducing a variety of oxyanions such as iodate, which has a high similarity to bromate, we hypothesize that S. oneidensis MR-1 can reduce bromate. Here, we conducted an experiment to investigate whether S. oneidensis MR-1 can reduce bromate, and report bromate reduction mediated by a dimethylsulfoxide reductase encoded with dmsA. S. oneidensis MR-1 is not a bromate-respiring bacterium but can reduce bromate to bromide under microaerobic conditions. When exposed to 0.15, 0.2, 0.25, 0.5, and 1 mM bromate, S. oneidensis MR-1 reduced bromate by around 100, 75, 64, 48, and 23%, respectively, within 12 h. In vivo evidence from gene deletion mutants and complemented strains of S. oneidensis MR-1 indicates that MtrB, MtrC, CymA, GspD, and DmsA are involved in bromate reduction, but not NapA, FccA, or SYE4. Based on our results as well as previous findings, a proposed molecular mechanism for bromate reduction is presented in this study. Moreover, a genomic survey indicates that 9 of the other 56 reported Shewanella species encode proteins highly homologous to CymA, GspD, and DmsA of S. oneidensis MR-1 by sequence alignment. The results of this study contribute to understanding a pathway for microbial bromate reduction.

11.
Appl Microbiol Biotechnol ; 106(19-20): 6785-6797, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085530

RESUMO

Public concerns are increasing regarding the prevalence and transmission of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), especially ARG persistence and dissemination in activated sludge (AS). However, the temporal dynamics of ARGs in the AS of WWTPs over a long period of time and their transfer potential after the treatment process upgrade (e.g., total nitrogen reduction from 20 to 15 mg/L in effluent) remain poorly explored. Here, metagenomic sequencing was performed to quantify the ARGs in AS samples from two WWTPs with different treatment processes over a 2-year period. A total of 368 and 426 ARG subtypes affiliated with 20 ARG types were identified separately in the two WWTPs and the similar core ARGs were shared by all 54 samples. There were significant differences in ARG composition in different treatment processes, yet the abundance and diversity of ARGs in the AS samples demonstrated no distinct seasonal patterns. Notably, after the treatment process upgrade, the relative abundance of sulfonamide, beta-lactam, and aminoglycoside resistance genes was reduced by more than 10%, and the transfer potential of ARGs in bacterial pathogens decreased greatly, which suggested that an upgrade could limit the prevalence and transmission of ARGs. Variation partitioning analysis showed that metal resistance genes rather than bacterial community represented the significantly influential factor in shaping ARGs, and some key genera correlated with ARGs were identified through network analysis. These results will deepen our understanding of the dynamic changes in ARG profiles in AS systems and guide wastewater treatment plant upgrades. KEY POINTS: • The potential transfer of ARGs decreased after the treatment process upgrade • Metal resistance genes were the most influential factor in shaping ARG composition • Co-occurrence networks displayed potential hosts of beta-lactam resistance genes.


Assuntos
Antibacterianos , Esgotos , Aminoglicosídeos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Nitrogênio , Esgotos/microbiologia , Sulfonamidas , Águas Residuárias/microbiologia , beta-Lactamas
12.
Front Microbiol ; 13: 928153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090102

RESUMO

Background: Paraclostridium bifermentans is the most diverse distributed species of Paraclostridium and can cause fatal human infections under rare conditions. However, its pathogenic mechanisms and adaptation ability behind infections remain unclear. Herein, we reported the complete genome sequence of P. bifermentans HD0315_2 isolated from the feces of a patient with Crohn's disease. Then, we performed genomic analyses to understand its pathogenic mechanisms and adaptation ability. Results: The de novo assembly revealed that the HD0315_2 strain carried a circular chromosome of 3.27 Mb and six circular plasmids (19.41 to 139.50 kb). The phylogenomic analysis assigned the HD0315_2 strain as P. bifermentans and reclassified some previously non-P. bifermentans strains into this clade. The general genomic features showed that this species harbored a flexible genomic pool characterized by variable genome length and multiple plasmids. Then, the HD0315_2 strain was predicted as a human pathogen with high probability, and Listeria LIPI-1 virulence proteins were identified on its genome. Besides, abundant antibiotics/metal/stress resistant genes, such as asrABCH, cat, mccF, macB, entS, albA, bcrA, and tetB, were carried by either the genome or the plasmids. Furthermore, we proposed that transposase-directed horizontal gene transfer was responsible for the distribution of multiple copies of the hin gene in the plasmids. Conclusion: The flexible genomic pool of P. bifermentans encodes abundant functions for antimicrobial or oxidative stress resistance, helping it successfully inhabit and adapt to diverse environments. Moreover, P. bifermentans HD0315_2 might infect hosts via a Listeria LIPI-1-like cycle, with the help of a plasmid expressing the Hin DNA invertase to evade host immune responses.

13.
Sci Total Environ ; 851(Pt 2): 158330, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041613

RESUMO

Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs.


Assuntos
Microbiota , Esgotos , Esgotos/microbiologia , Cloreto de Polivinila , Genes Bacterianos , Microplásticos , Plásticos , Antibacterianos/farmacologia , Tetraciclina , Águas Residuárias/microbiologia
14.
Appl Microbiol Biotechnol ; 106(12): 4749-4761, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708750

RESUMO

As a possible human carcinogen, bromate is easily formed in drinking water and wastewater treatments using advanced oxidation technology. Microbial reduction is a promising method to remove bromate, but little is known about aerobic bromate reduction as well as the molecular mechanism of tolerance and reduction to bromate in bacteria. Herein, bromate reduction by isolate under aerobic conditions was reported for the first time. Shewanella decolorationis Ni1-3, isolated from an activated sludge recently, was identified to reduce bromate to bromide under both aerobic and anaerobic conditions. RNA-Seq together with differential gene expression analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify that bromate triggered the expression of genes for oxidative stress protection (e.g., ohr, msrQ, dsbC, gpo, gorA, and gst), DNA damage repair (e.g., dprA, parA, and recJ), and sulfur metabolism (e.g., cysH, cysK, and cysP). However, the genes for lactate utilization (e.g., lldF and dld), nitrate reduction (e.g., napA and narG), and dissimilatory metal reduction (e.g., mtrC and omcA) were down-regulated in the presence of bromate. The results contribute to revealing the molecular mechanism of resistance and reduction in S. decolorationis Ni1-3 to bromate under aerobic conditions and clarifying the biogeochemical cycle of bromine. KEY POINTS: • Aerobic bromate reduction by pure culture was observed for the first time • Strain Ni1-3 effectively reduced bromate under both aerobic and anaerobic conditions • ROS and SOS response genes were strongly induced in the presence of bromate.


Assuntos
Bromatos , Shewanella , Bromatos/metabolismo , Bromatos/farmacologia , Perfilação da Expressão Gênica , Humanos , Oxirredução , Shewanella/genética , Shewanella/metabolismo
15.
Front Microbiol ; 13: 851844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422780

RESUMO

Bromate, a possible human carcinogen, can be reduced to innocuous bromide by microorganisms. To characterize bromate reducers, microbes were enriched anaerobically from activated sludge by using bromate as the sole electron acceptor and different carbon sources as the electron donor. Bacteria that showed significant bromate-reducing activity but not coupled to cell growth were isolated. Two whole genomes of the isolates, namely, Raoultella electrica Lac1 and Klebsiella variicola Glu3, were reconstructed by Illumina and Nanopore sequencing. Transcriptomic analysis suggested that neither the respiratory nitrate reductase, the selenate reductase, nor the dimethylsulfoxide reductase was involved in the bromate reduction process, and strain K. variicola Glu3 reduced bromate via a yet undiscovered enzymatic mechanism. The results provide novel phylogenetic insights into bromate-reducing microorganisms and clues in putative genes encoding enzymes related to bromate reduction.

16.
Front Microbiol ; 13: 843807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391736

RESUMO

Bioremediation has been considered as a promising method for recovering chemical polluted environments. Here Shewanella decolorationis strain Ni1-3 showed versatile abilities in bioremediation. To improve the bioremediation activity, RNA polymerase (RNAP) mutations of strain Ni1-3 were screened. Eleven mutants were obtained, of which mutant #40 showed enhanced Amaranth (AMR) degradation capacity, while mutant #21 showed defected capacity in AMR degradation but greatly enhanced capacity in cathodic metal leaching which is three to four times faster than that of the wild-type (WT) strain Ni1-3, suggesting that different pathways were involved in these two processes. Transcriptional profiling and gene co-expression networks between the mutants (i.e., #40 and #22) and the WT strain disclosed that the non-CymA-Mtr but cytochrome b- and flavin-oxidoreductase-dominated azo dye degradation pathways existed in S. decolorationis, which involved key proteins TorC, TorA, YceJ, YceI, Sye4, etc. Furthermore, the involvement of TorA was verified by trimethylamine N-oxide reduction and molybdenum enzyme inhibitory experiments. This study clearly demonstrates that RNAP mutations are effective to screen active microbial candidates in bioremediation. Meanwhile, by clarifying the novel gene co-expression network of extracellular electron transfer pathways, this study provides new insights in azo dye degradation and broadens the application of Shewanella spp. in bioremediation as well.

17.
Gut Pathog ; 13(1): 71, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876224

RESUMO

BACKGROUND: Enterococcus raffinosus is one of the Enterococcus species that often cause nosocomial infections. To date, only one E. raffinosus genome has been completely assembled, and the genomic features have not been characterized. Here, we report the complete genome sequence of the strain CX012922, isolated from the feces of a Crohn's disease patient, and perform a comparative genome analysis to the relevant Enterococcus spp. strains in silico. RESULTS: De novo assembly of the sequencing reads of the strain CX012922 generated a circular genome of 2.83 Mb and a circular megaplasmid of 0.98 Mb. Phylogenomic analysis revealed that the strain CX012922 belonged to the E. raffinosus species. By comparative genome analysis, we found that some strains previously identified as E. raffinosus or E. gilvus should be reclassified as novel species. Genome islands (GIs), virulence factors, and antibiotic genes were found in both the genome and the megaplasmid, although pathogenic genes were mainly encoded in the genome. A large proportion of the genes encoded in the megaplasmid were involved in substrate utilization, such as raffinose metabolism. Giant megaplasmids (~1 Mb) equipped with toxin-antitoxin (TA) systems generally formed symbiosis relationships with the genome of E. raffinosus strains. CONCLUSIONS: Enterococcus spp. have a higher species-level diversity than is currently appreciated. The pathogenicity of E. raffinosus is mainly determined by the genome-encoded virulence factors, while the megaplasmid broadens the gene function pool. The symbiosis between the genome and the megaplasmids endows E. raffinosus with large genomic sizes as well as versatile gene functions, especially for their colonization, adaptation, virulence, and pathogenesis in the human gut.

18.
G3 (Bethesda) ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34568919

RESUMO

Shewanella decolorationis are Gram-negative γ-Proteobacteria with environmental bioremediation potential because they can perform anaerobic respiration using various types of pollutants as terminal electron acceptors. So far, three isolated and cultured strains of S. decolorationis have been reported. However, no complete S. decolorationis genome has been published yet, which limited exploring their metabolism and feasibility in application. Here, S. decolorationis Ni1-3 isolated from an electroplating wastewater treatment plant showed strong reduction capabilities on azo dyes and oxidized metals. In order to construct the complete genome, high-quality whole-genome sequencing of strain Ni1-3 were performed by using both Nanopore MinION and Illumina NovaSeq platforms, from which the first complete genome of S. decolorationis was obtained by hybrid assembly. The genome of strain Ni1-3 contains a megaplasmid and a circular chromosome which encodes more proteins than that of the strains LDS1 and S12 belonging to the same species. In addition, more Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are identified in strain Ni1-3 genome. Importantly, 32 cytochrome-c and AzoR azoreductase coding genes are identified in the genome, which make strain Ni1-3 competent to degrade the azo dyes and versatile to bioremediate some other environmental pollution. The complete genome sequence of strain Ni1-3 can expand our knowledge toward its metabolic capabilities and potential, meanwhile, provide a reference to reassemble genomes of other S. decolorationis strains.


Assuntos
Shewanella , Compostos Azo , Biodegradação Ambiental , Oxirredução , Shewanella/genética
19.
Ecotoxicol Environ Saf ; 223: 112592, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364128

RESUMO

Recycling of spent lithium-ion batteries (LIBs) has become a global issue because of the potential environment risks raised by spent LIBs as well as high valuable metal content remaining in them. Although bioleaching is an environmentally friendly method to recover metals from spent LIBs, the commonly utilized bioleaching bacterial consortia or strains enriched/isolated from acidic environments cannot be applied at large scales owing to their long leaching cycle and poor tolerance to organic compounds. Here, two bioleaching consortia were enriched in 60 days from neutral activated sludge and were identified phylogenetically divergent from the documented bioleaching bacteria. The results showed that the novel consortia shortened the leaching cycle almost by half when compared to the previous reported consortia or strains, of which one consortium dominated by Acidithiobacillus ferrooxidans displayed high bioleaching efficiency on LiMn2O4, as 69.46% lithium (Li) and 67.60% manganese (Mn) were leached out in seven days. This consortium was further domesticated using cathodic materials for 100 days and proved consisted of three mixotrophs and two chemoautotrophs, three of which were novel species from the genera Sulfobacillus and Leptospirillum. More genes coding for proteins that utilize organic compounds were annotated in the metagenomic assembled genomes (MAGs) than previously reported. A mutualistic relationship between mixotrophs and chemoautotrophs was suggested to help the consortium surviving under either organic- rich or shortage environments. The results discovered that novel bioleaching bacteria with shorter leaching cycle and higher tolerance to organics could be enriched from non-acidic environments, which showed high potential for the metal recovering from spent LIBs or other organic-rich environments.


Assuntos
Lítio , Esgotos , Acidithiobacillus , Bactérias/genética , Fontes de Energia Elétrica , Reciclagem
20.
Cardiol Res Pract ; 2021: 8874450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777449

RESUMO

The number of confirmed COVID-19 cases has increased drastically; however, information regarding the impact of this disease on the occurrence of arrhythmias is scarce. The aim of this study was to determine the impact of COVID-19 on arrhythmia occurrence. This prospective study included patients with COVID-19 treated at the Leishenshan Temporary Hospital of Wuhan City, China, from February 24 to April 5, 2020. Demographic, comorbidity, and arrhythmias data were collected from patients with COVID-19 (n = 84) and compared with control data from patients with bacterial pneumonia (n = 84) infection. Furthermore, comparisons were made between patients with severe and nonsevere COVID-19 and between older and younger patients. Compared with patients with bacterial pneumonia, those with COVID-19 had higher total, mean, and minimum heart rates (all P < 0.01). Patients with severe COVID-19 (severe and critical type diseases) developed more atrial arrhythmias compared with those with nonsevere symptoms. Plasma creatine kinase isoenzyme (CKMB) levels (P=0.01) were higher in the severe group than in the nonsevere group, and there were more deaths in the severe group than in the nonsevere group (6 (15%) vs. 3 (2.30%); P=0.05). Premature atrial contractions (PAC) and nonsustained atrial tachycardia (NSAT) were significantly positively correlated with plasma CKMB levels but not with high-sensitive cardiac troponin I or myoglobin levels. Our data demonstrate that COVID-19 patients have higher total, mean, and minimum heart rates compared with those with bacterial pneumonia. Patients with severe or critical disease had more frequent atrial arrhythmias (including PAC and AF) and higher CKMB levels and mortality than those with nonsevere symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA