Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Redox Biol ; 74: 103234, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38861834

RESUMO

Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.

2.
Eur J Immunol ; : e2350809, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727191

RESUMO

HIV infection is associated with gut dysbiosis, and microbiome variability may affect HIV control when antiretroviral therapy (ART) is stopped. The TLR7 agonist, vesatolimod, was previously associated with a modest delay in viral rebound following analytical treatment interruption in HIV controllers (HCs). Using a retrospective analysis of fecal samples from HCs treated with vesatolimod or placebo (NCT03060447), people with chronic HIV (CH; NCT02858401) or without HIV (PWOH), we examined fecal microbiome profile in HCs before/after treatment, and in CH and PWOH. Microbiome diversity and abundance were compared between groups to investigate the association between specific phyla/species, immune biomarkers, and viral outcomes during treatment interruption. Although there were no significant differences in gut microbiome diversity between people with and without HIV, HCs, and CH shared common features that distinguished them from PWOH. there was a trend toward greater microbiome diversity among HCs. Treatment with vesatolimod reduced dysbiosis in HCs. Firmicutes positively correlated with T-cell activation, while Bacteroidetes and Euryarchaeota inversely correlated with TLR7-mediated immune activation. Specific types of fecal microbiome abundance (e.g. Alistipes putredinis) positively correlated with HIV rebound. In conclusion, variability in the composition of the fecal microbiome is associated with markers of immune activation following vesatolimod treatment and ART interruption.

3.
United European Gastroenterol J ; 12(3): 374-389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315582

RESUMO

AIMS: To investigate the current situation of mental psychology and quality of life (QoL) in patients with inflammatory bowel disease (IBD) in China, and analyze the influencing factors. METHODS: A unified questionnaire was developed to collect clinical data on IBD patients from 42 hospitals in 22 provinces from September 2021 to May 2022. Multivariate Logistic regression analysis was conducted, and independent influencing factors were screened out to construct nomogram. The consistency index (C-index), receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, accuracy, and clinical utility of the nomogram model. RESULTS: A total of 2478 IBD patients were surveyed, including 1371 patients with ulcerative colitis (UC) and 1107 patients with Crohn's disease (CD). Among them, 25.5%, 29.7%, 60.2%, and 37.7% of IBD patients had anxiety, depression, sleep disturbance and poor QoL, respectively. The proportion of anxiety, depression, and poor QoL in UC patients was significantly higher than that in CD patients (all p < 0.05), but there was no difference in sleep disturbance between them (p = 0.737). Female, higher disease activity and the first visit were independent risk factors for anxiety, depression and sleep disturbance in IBD patients (all p < 0.05). The first visit, higher disease activity, abdominal pain and diarrhea symptoms, anxiety, depression and sleep disturbance were independent risk factors for the poor QoL of patients (all p < 0.05). The AUC value of the nomogram prediction model for predicting poor QoL was 0.773 (95% CI: 0.754-0.792). The calibration diagram of the model showed that the calibration curve fit well with the ideal curve, and DCA showed that the nomogram model could bring clinical benefits. CONCLUSION: IBD patients have higher anxiety, depression, and sleep disturbance, which affect their QoL. The nomogram prediction model we constructed has high accuracy and performance when predicting QoL.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Transtornos do Sono-Vigília , Feminino , Humanos , China/epidemiologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/epidemiologia , Colite Ulcerativa/psicologia , Doença de Crohn/diagnóstico , Doença de Crohn/epidemiologia , Doença de Crohn/psicologia , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/psicologia , Qualidade de Vida , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/diagnóstico , Masculino
4.
Neural Regen Res ; 19(7): 1473-1479, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051889

RESUMO

ABSTRACT: Although antipsychotics that act via monoaminergic neurotransmitter modulation have considerable therapeutic effect, they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorders. This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs. Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitters. Among these candidate neurotransmitters, lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years. Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses; animal experiments have also shown that the supply of exogenous lactate exerts an antidepressant effect. In this review, we have described how medications targeting newer neurotransmitters offer promise in psychiatric diseases; we have also summarized the advances in the use of lactate (and its corresponding signaling pathways) as a signaling molecule. In addition, we have described the alterations in brain lactate levels in depression, anxiety, bipolar disorder, and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology.

6.
Laser Photon Rev ; 16(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36389089

RESUMO

Conventional light sheet fluorescence microscopy (LSFM) utilizes two perpendicularly arranged objective lenses for optical excitation and detection, respectively. Such a configuration often limits the use of high-numerical-aperture (NA) objectives or requires specially designed long-working-distance objectives. Here, a LSFM based on a micro-mirror array (MMA) to enable light sheet imaging with a single objective lens is reported. The planar fluorescent emission excited by the light sheet illumination is collected by the same objective, relayed onto an MMA and detected by a side-view camera. The proposed scheme makes LSFM compatible to single objective imaging system and shows promising candidacy for high spatiotemporal imaging.

7.
Exp Neurol ; 349: 113966, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34973964

RESUMO

Astrocytic glycogen serves as an important glucose reserve, and its degradation provides extra support for neighboring neurons during energy deficiency. Salvianolic acid B (SAB) exerts a neuroprotective effect on reperfusion insult after cerebrovascular occlusion, but the effect of SAB on astrocytic glycogen and its relationship with neuroprotection are not completely understood. Here, we knocked down astrocyte-specific glycogen phosphorylase (GP, the rate-limiting enzyme in glycogenolysis) in vitro and in vivo and investigated the changes in key enzymes in glycogen metabolism by performing immunoblotting in vitro and immunofluorescence in vivo. Neurobehavioral and morphological assessments were conducted to uncover the outcomes during brain reperfusion. SAB accelerated astrocytic glycogenolysis by upregulating GP activity but not GP expression after reperfusion. Suppression of astrocytic glycogenolysis weakened SAB-mediated neuroprotection against the reperfusion insult. In addition, activation of glycogenolysis by SAB contributed to the survival of astrocytes and surrounding neurons by increasing antioxidant levels in astrocytes. Our data reveal that astrocytic GP represents an important metabolic target in SAB-induced protection against brain damage after cerebrovascular recanalization.


Assuntos
Astrócitos/metabolismo , Benzofuranos/farmacologia , Glicogênio/metabolismo , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Comportamento Animal , Sobrevivência Celular , Feminino , Glicogênio Fosforilase/metabolismo , Glicogenólise , AVC Isquêmico/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Traumatismo por Reperfusão/psicologia
8.
Microbiol Spectr ; 10(1): e0085321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019681

RESUMO

Although combination antiretroviral therapy (cART) can suppress the replication of HIV, the virus persists and rebounds when treatment is stopped. To find a cure that can eradicate latent reservoir, a method should be able to quantify the lingering HIV. Unlike other digital PCR technologies, droplet digital PCR (ddPCR), provides absolute quantification of target DNA molecules using fluorescent dually labeled probes by massively partitioning the sample into droplets. ddPCR enables exquisitely sensitive detection and quantification of viral DNA from very limiting clinical samples, including brain tissues. We developed and optimized duplex ddPCR assays for the detection and quantification of HIV proviral DNA and integrated DNA in the brain of HIV-1-infected patients. We have applied these approaches to successfully analyze 77 human brain tissues obtained from 27 HIV-1-infected individuals, either fully virally suppressed or with encephalitis, and were able to quantify low levels of viral DNA. Further developments and advancement of digital PCR technology is promising to aid in accurate quantification and characterization of the persistent HIV reservoir. IMPORTANCE We developed ddPCR assays to quantitatively measure HIV DNA and used this ddPCR assays to detect and quantitatively measure HIV DNA in the archived brain tissues from HIV patients. The tissue viral loads assessed by ddPCR was highly correlative with those assessed by qPCR. HIV DNA in the brain was detected more frequently by ddPCR than by qPCR. ddPCR also showed higher sensitivity than qPCR since ddPCR detected HIV DNA signals in some tissues from virally suppressed individuals while qPCR could not.


Assuntos
Encéfalo/virologia , Encefalite/virologia , Infecções por HIV/virologia , HIV-1/genética , Reação em Cadeia da Polimerase/métodos , Provírus/genética , Viremia/virologia , DNA Viral/genética , Encefalite/imunologia , Infecções por HIV/imunologia , HIV-1/isolamento & purificação , HIV-1/fisiologia , Humanos , Provírus/isolamento & purificação , Provírus/fisiologia , Carga Viral , Viremia/imunologia , Integração Viral
9.
J Neuroinflammation ; 18(1): 230, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645472

RESUMO

BACKGROUND: Astrocytic glycogen works as an essential energy reserve for surrounding neurons and is reported to accumulate excessively during cerebral ischemia/reperfusion (I/R) injury. Our previous study found that accumulated glycogen mobilization exhibits a neuroprotective effect against I/R damage. In addition, ischemia could transform astrocytes into A1-like (toxic) and A2-like (protective) subtypes. However, the underlying mechanism behind accumulated glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury and its relationship with the astrocytic A1/A2 paradigm is unknown. METHODS: Astrocytic glycogen phosphorylase, the rate-limiting enzyme in glycogen mobilization, was specifically overexpressed and knocked down in mice and in cultured astrocytes. The I/R injury was imitated using a middle cerebral artery occlusion/reperfusion model in mice and an oxygen-glucose deprivation/reoxygenation model in cultured cells. Alterations in A1-like and A2-like astrocytes and the expression of phosphorylated nuclear transcription factor-κB (NF-κB) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were determined by RNA sequencing, immunofluorescence and immunoblotting. Metabolites, including glycogen, NADPH, glutathione and reactive oxygen species (ROS), were analyzed by biochemical analysis. RESULTS: Here, we observed that astrocytic glycogen mobilization inhibited A1-like astrocytes and enhanced A2-like astrocytes after reperfusion in an experimental ischemic stroke model in vivo and in vitro. In addition, glycogen mobilization could enhance the production of NADPH and glutathione by the pentose phosphate pathway (PPP) and reduce ROS levels during reperfusion. NF-κB inhibition and STAT3 activation caused by a decrease in ROS levels were responsible for glycogen mobilization-induced A1-like and A2-like astrocyte transformation after I/R. The astrocytic A1/A2 paradigm is closely correlated with glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury. CONCLUSIONS: Our data suggest that ROS-mediated NF-κB inhibition and STAT3 activation are the key pathways for glycogen mobilization-induced neuroprotection and provide a promising metabolic target for brain reperfusion injury in ischemic stroke.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Glicogênio/metabolismo , AVC Isquêmico/metabolismo , Neuroproteção/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Técnicas de Cocultura , Feminino , AVC Isquêmico/patologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
10.
Eur J Immunol ; 51(10): 2441-2451, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34287839

RESUMO

Inhibition of the BCL6 BTB domain results in killing Diffuse Large B-cell Lymphoma (DLBL) cells, reducing the T-cell dependent germinal center (GC) reaction in mice, and reversing GC hyperplasia in nonhuman primates. The available BCL6 BTB-specific inhibitors are poorly water soluble, thus, limiting their absorption in vivo and our understanding of therapeutic strategy targeting GC. We synthesized a prodrug (AP-4-287) from a potent BCL6 BTB inhibitor (FX1) with improved aqueous solubility and pharmacokinetics (PK) in mice. We also evaluated its in vivo biological activity on humoral immune responses using the sheep red blood cells (SRBC)-vaccination mouse model. AP-4-287 had a significant higher aqueous solubility and was readily converted to FX1 in vivo after intraperitoneally (i.p.) administration, but a shorter half-life in vivo. Importantly, AP-4-287 treatment led to a reversible effect on (1) the reduction in the frequency of splenic Ki67+ CD4+ T cells, Tfh cells, and GC B cells; (2) lower GC formation following vaccination; and (3) a decrease in the titers of antigen-specific IgG and IgM antibodies. Our study advances the preclinical development of drug targeting BCL6 BTB domain for the treatment of diseases that are associated with abnormal BCL6 elevation.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Formação de Anticorpos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Técnicas de Química Sintética , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/síntese química , Indóis/farmacocinética , Camundongos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Proteínas Proto-Oncogênicas c-bcl-6/química , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/síntese química , Tiazolidinedionas/farmacocinética
11.
Am J Physiol Heart Circ Physiol ; 321(2): H461-H474, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270374

RESUMO

An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.


Assuntos
Tolerância ao Exercício/fisiologia , Gânglios Espinais/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Neurônios Aferentes/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Reflexo Anormal , Vias Aferentes , Animais , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Insuficiência Cardíaca/metabolismo , Canal de Potássio Kv1.4/metabolismo , Masculino , Músculo Esquelético/inervação , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reflexo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Canais de Potássio Shaw/metabolismo
12.
Small ; 17(33): e2101901, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34228384

RESUMO

Although aqueous Zn-ion batteries (ZIBs) with low cost and high safety show great potential in large-scale energy storage system, metallic Zn anode still suffers from unsatisfactory cycle stability due to unregulated growth of Zn dendrites, corrosion, and formation of various side products during electrochemical reaction. Here, an ultrafast and simple method to achieve a stable Zn anode is developed. By simply immersing a Zn plate into an aqueous solution of CuSO4 for only 10-60 s, a uniform and robust protective layer (Zn4 SO4 (OH)6 ·5H2 O/Cu2 O) is formed on commercial Zn plate (Zn/ZCO), which enables uniform electric field distribution and controllable dendrite growth, leading to a long-term cycle life of over 1400 h and high average Coulombic efficiency (CE) of 99.2% at 2.0 mA cm-2 and 2.0 mAh cm-2 . These excellent characteristics of the prepared Zn anode show great potential in practical applications for high-performance aqueous Zn-ion batteries.

13.
Sci Transl Med ; 13(599)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162752

RESUMO

Toll-like receptor 7 (TLR7) agonists, in combination with other therapies, can induce sustained control of simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) in nonhuman primates. Here, we report the results of a randomized, double-blind, placebo-controlled phase 1b clinical trial of an oral TLR7 agonist, vesatolimod, in HIV-1-infected controllers on antiretroviral therapy (ART). We randomized participants 2:1 to receive vesatolimod (n = 17) or placebo (n = 8) once every other week for a total of 10 doses while continuing on ART. ART was then interrupted, and the time to viral rebound was analyzed using the Kaplan-Meier method. Vesatolimod was associated with induction of immune cell activation, decreases in intact proviral DNA during ART, and a modest increase in time to rebound after ART was interrupted. The delayed viral rebound was predicted by the lower intact proviral DNA at the end of vesatolimod treatment (13 days after the final dose). Inferred pathway analysis suggested increased dendritic cell and natural killer cell cross-talk and an increase in cytotoxicity potential after vesatolimod dosing. Larger clinical studies will be necessary to assess the efficacy of vesatolimod-based combination therapies aimed at long-term control of HIV infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Pteridinas , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Receptor 7 Toll-Like , Carga Viral
14.
Opt Lett ; 46(10): 2332-2335, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988576

RESUMO

Fluorescence emission difference (FED) microscopy, as an emerging super-resolution imaging modality, uses double-exposure and subtraction between double-exposed fluorescence images to achieve high spatial resolution beyond the diffraction limit. Here we report on a new FED imaging approach with a single-exposure scheme based on dynamic cylindrical-vector fields, where the fluorescence excitation beam can be switched between radial and azimuthal polarization states at a designated high radio frequency. Lateral spatial resolution of ${\sim} \lambda/4$ is achieved. Being able to integrate with lock-in amplifier detection, the proposed method will find promising applications for high-speed fluorescence imaging with improved signal-to-noise ratio.

15.
AIDS ; 35(7): 1021-1029, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33710021

RESUMO

OBJECTIVES: CD4+ T-cell decline and increasing virus levels are considered hallmarks of HIV/AIDS pathogenesis but we previously demonstrated in rhesus macaques that tissue macrophage destruction by simian immunodeficiency virus (SIV) infection associated with increased monocyte turnover also appear to impact pathogenesis. It remains unclear, however, which factors best predict onset of terminal disease progression and survival time. The objective of this study, therefore, was to directly compare these co-variates of infection for predicting survival times in retrospective studies of SIV/simian-HIV (SHIV)-infected adult rhesus macaques. METHODS: Rhesus macaques were infected with various strains of SIV/SHIV and evaluated longitudinally for monocyte turnover, CD4+ T-cell loss, plasma viral load, and SIV/SHIV strain. Correlation analyses and machine learning algorithm modeling were applied to compare relative contributions of each of the co-variates to survival time. RESULTS: All animals with AIDS-related clinical signs requiring euthanasia exhibited increased monocyte turnover regardless of CD4+ T-cell level, viral strain, or plasma viral load. Regression analyses and machine learning algorithms indicated a stronger correlation and contribution between increased monocyte turnover and reduced survival time than between CD4+ T-cell decline, plasma viral load, or virus strain and reduced survival time. Decision tree modeling categorized monocyte turnover of 13.2% as the initial significant threshold that best predicted decreased survival time. CONCLUSION: These results demonstrate that monocytes/macrophages significantly affect HIV/SIV pathogenesis outcomes. Monocyte turnover analyses are not currently feasible in humans, so there is a need to identify surrogate biomarkers reflecting tissue macrophage damage that predict HIV infection disease progression.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Progressão da Doença , Infecções por HIV/complicações , Humanos , Macaca mulatta , Estudos Retrospectivos , Carga Viral
16.
Viruses ; 13(2)2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670023

RESUMO

With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.


Assuntos
Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Humanos , Pandemias , Linfócitos T Citotóxicos/imunologia
17.
Front Neurosci ; 14: 577568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324147

RESUMO

Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most important factors when evaluating an individual's risk for SCZ. However, robust imaging biomarkers for the disease that can be used for diagnosis and determination of the prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned using resting-state functional magnetic resonance imaging. The subjects' brains were parcellated into 200 regions using the Craddock atlas, and the FC between each pair of regions was used as a classification feature. Multivariate pattern analysis using leave-one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity 84.06%, specificity 92.18%, and area under the receiver operating characteristic curve (AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the accurate classification. The FC patterns of each FDR were input into each classification model as test data to obtain a corresponding prediction label (a total of 76 individual classification scores), and the averaged individual classification score was then used as a robust measure to characterize whether each FDR showed an SCZ-type or HC-type FC pattern. A significant negative correlation was found between the average classification scores of the FDRs and their semantic fluency scores. These findings suggest that FC combined with a machine learning algorithm could help to predict whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.

18.
Nat Sci Sleep ; 12: 1067-1074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262670

RESUMO

BACKGROUND: It is well known that circadian rhythms and sleep homeostasis contribute to a pronounced trough in sleepiness and behavioral performance at night. However, the underlying neuroimaging mechanisms remain unclear. How brain-function connectivity is modulated during sleep deprivation (SD) has been rarely examined. METHODS: By increasing the number of scanning sessions during SD, the current study used voxel-mirrored homotopic connectivity (VMHC) to investigate dynamic changes in interhemispheric communication during one night of SD. Every 2 hours from 10 pm to 06 am (session 1, 10 pm; session 2, 12 am; session 3, 2 am; session 4, 4 am; session 5, 6 am), functional magnetic resonance-imaging data and Stanford Sleepiness Scale (SSS) scores were collected from 36 healthy participants with intermediate chronotype. Dynamic changes in SSS scores and VMHC were determined using one-way repeated-measure ANOVA with the false discovery-rate method to correct for multiple comparisons. RESULTS: Significant time effects for VMHC were found mainly in the bilateral thalamus, bilateral superior temporal gyrus, and bilateral precentral gyrus. SSS scores and VMHC in these areas were both found to be monotonously increased during SD. Furthermore, significant positive associations were found between SSS valu and VMHC values in the left superior temporal and right superior gyri. CONCLUSION: These findings might represent the dynamic modulation of circadian rhythm merely or the interaction effects of both circadian rhythm and sleep homeostasis on interhemispheric connectivity within the thalamus, default-mode network, and sensorimotor network. Our study provides more comprehensive information on how SD regulates brain connectivity between hemispheres and adds new evidence of neuroimaging correlates of increased sleepiness after SD.

19.
iScience ; 23(5): 101136, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32446205

RESUMO

Astrocytic glycogen is an important energy reserve in the brain and is believed to supply fuel during energy crisis. However, the pattern of glycogen metabolism in ischemic stroke and its potential therapeutic impact on neurological outcomes are still unknown. Here, we found extensive brain glycogen accumulation after reperfusion in ischemic stroke patients and primates. Glycogenolytic dysfunction in astrocytes is responsible for glycogen accumulation, caused by inactivation of the protein kinase A (PKA)-glycogen phosphorylase kinase (PhK)-glycogen phosphorylase (GP) cascade accompanied by the activation of glycogen synthase kinase-3ß (GSK3ß). Genetic or pharmacological augmentation of astrocytic GP could promote astrocyte and neuron survival and improve neurological behaviors. In addition, we found that insulin exerted a neuroprotective effect, at least in part by rescuing the PKA-PhK-GP cascade to maintain homeostasis of glycogen metabolism during reperfusion. Together, our findings suggest a promising intervention for undesirable outcomes in ischemic stroke.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32325156

RESUMO

The antidepressant effect of repetitive transcranial magnetic stimulation (rTMS) has been extensively studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of depression and may be a targeted mechanism for treatment. However, the influence of rTMS on lipid composition and the differences between these effects compared to antidepressants like fluoxetine (Flx) have never been investigated. Using a chronic unpredictable stress (CUS) model in rats, we assessed the antidepressive effects of rTMS and Flx treatments and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. Both rTMS and Flx treatments ameliorated depressive-like behaviors induced by CUS. Moreover, changes in lipid composition, especially glycerophospholipids, sphingolipids, and glycerolipids induced by CUS in the hippocampus were more robust than those observed in the PFC. CUS led to decreased levels of 20 carbon-containing fatty acyls and polyunsaturated fatty acyls in the PFC, and decreased levels of acyl carnitines (AcCa) in both the hippocampus and PFC. Notably, rTMS treatment had higher impact than Flx on composition of glycerophospholipids and sphingolipids in the hippocampus that were altered by CUS, while Flx attenuated CUS-induced changes in the PFC to a greater extent than rTMS. However, neither was able to restore fatty acyls and AcCa to baseline levels. Altogether, modulation of the brain lipidome may be involved in the antidepressant action of rTMS and Flx, and the degree to which these treatments induce changes in lipid composition within the hippocampus and PFC might explain their differential antidepressant effects.


Assuntos
Antidepressivos/uso terapêutico , Química Encefálica/efeitos dos fármacos , Transtorno Depressivo Maior/terapia , Fluoxetina/uso terapêutico , Lipidômica , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Estresse Psicológico/terapia , Estimulação Magnética Transcraniana , Animais , Comportamento Animal/efeitos dos fármacos , Doença Crônica , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Metabolismo dos Lipídeos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA