Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Pharmacol ; 973: 176588, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621508

RESUMO

Hashimoto's thyroiditis (HT) is the most frequent autoimmune disorder. Growing work points to the involvement of aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, in the regulation of immune homeostasis. However, the roles of AhR and its ligands in HT remains unclear. In this study, we leveraged public human database analyses to postulate that the AhR expression was predominantly in thyroid follicular cells, correlating significantly with the thyroid infiltration levels of multiple immune cells in HT patients. Using a thyroglobulin-induced HT mouse model and in vitro thyroid follicular epithelial cell cultures, we found a significant downregulation of AhR expression in thyrocytes both in vivo and in vitro. Conversely, activating AhR by FICZ, a natural AhR ligand, mitigated inflammation and apoptosis in thyrocytes in vitro and conferred protection against HT in mice. RNA sequencing (RNA-seq) of thyroid tissues indicated that AhR activation moderated HT-associated immune or inflammatory signatures. Further, immunoinfiltration analysis indicated that AhR activation regulated immune cell infiltration in the thyroid of HT mice, such as suppressing cytotoxic CD8+ T cell infiltration and promoting anti-inflammatory M2 macrophage polarization. Concomitantly, the expression levels of interleukin-2 (IL-2), a lymphokine that downregulates immune responses, were typically decreased in HT but restored upon AhR activation. In silico validation substantiated the binding interaction between AhR and IL-2. In conclusion, targeting the AhR with FICZ regulates IL-2 and immune infiltration to alleviate experimental HT, shedding new light on the therapeutic intervention of this prevalent disease.


Assuntos
Carbazóis , Doença de Hashimoto , Interleucina-2 , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Camundongos , Doença de Hashimoto/imunologia , Doença de Hashimoto/metabolismo , Doença de Hashimoto/patologia , Humanos , Interleucina-2/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Epiteliais da Tireoide/metabolismo , Células Epiteliais da Tireoide/efeitos dos fármacos , Feminino , Apoptose , Simulação de Acoplamento Molecular
2.
Int J Biol Macromol ; 238: 124111, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36948330

RESUMO

Okra (Abelmoschus esculentus (L.) Moench) is rich in various bioactive ingredients and used as a medicinal plant in traditional medicine. In the present study, to find the polysaccharide with anti-lipotoxicity effects from okra and clarify its structure, a pectin OP-1 was purified from okra, which had a backbone containing →4)-α-GalpA-(1 â†’ residues, and 1,5-Ara linked the main chain through the O-3 of the residue →3,4)-α-GalpA-(1→, and the C-6 of residue 1, 4-α-GalpA replaced by methyl ester. In vitro experiments showed that OP-1 pretreatment alleviated oleic acid (OA)-induced lipid accumulation, ROS generation, apoptosis, transaminase leakage, and inflammatory cytokine secretion in HepG2 cells, resulting in reduced lipotoxicity. Further molecular results revealed that OP-1 increased Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and affected the expression of AMPK downstream targets, including inhibit SREBP1c and FAS, as well as activate CPT-1A. Impressively, AMPK inhibitor dorsomorphin (Compound C) blocked the effects of OP-1 against lipotoxicity. The effects of OP-1 on lipid metabolism were also diminished by dorsomorphin. Our results demonstrated that OP-1 possesses a potent function in preventing lipotoxicity via regulating AMPK-mediated lipid metabolism and provide a novel insight into the future utilization of okra polysaccharide.


Assuntos
Abelmoschus , Pectinas , Pectinas/farmacologia , Abelmoschus/química , Proteínas Quinases Ativadas por AMP , Polissacarídeos/farmacologia , Polissacarídeos/química , Antioxidantes/química
3.
BMC Endocr Disord ; 22(1): 179, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35840950

RESUMO

BACKGROUND: While contributions of dyslipidemia to autoimmune diseases have been described, its impact on thyroid autoimmunity (TA) is less clear. Programmed cell death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint is crucial in preventing autoimmune attack while its blockade exacerbates TA. We thus unveiled the effect of high-fat diet (HFD) on TA, focusing on the contribution of PD-1/PD-L1. METHODS: Female Sprague Dawley (SD) rats were randomly fed with a regular diet or HFD (60% calories from fat) for 24 weeks. Then, thyroid ultrasonography was performed and samples were collected for lipid and thyroid-related parameter measure. RESULTS: HFD rats exhibited hyperlipemia and abnormal biosynthesis of the unsaturated fatty acid in serum detected by lipidomics. These rats displayed a relatively lower echogenicity and increased inflammatory infiltration in thyroid accompanied by rising serum thyroid autoantibody levels and hypothyroidism, mimicking human Hashimoto's thyroiditis. These alterations were concurrent with decreased mRNA and immunostaining of intrathyroidal PD-1 and also serum PD-1 levels but not the PD-L1 expression, suggesting a role of a PD-1 pathway. Meanwhile, the infiltration of B and T cell, a key cellular event inhibited by the PD-1 signals, was enhanced in the thyroid of HFD rats, along with thyroid fibrosis and apoptosis. CONCLUSIONS: Our data suggest that HFD triggers TA through a mechanism possibly involving downregulation of PD-1-related immunosuppression, providing a novel insight into the link between dyslipidemia and autoimmune toxicities.


Assuntos
Doenças Autoimunes , Glândula Tireoide , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Antígeno B7-H1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Ratos , Ratos Sprague-Dawley , Glândula Tireoide/metabolismo
4.
BMC Neurosci ; 23(1): 25, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468730

RESUMO

BACKGROUND: Hashimoto's thyroiditis (HT) is an autoimmune illness that renders individuals vulnerable to neuropsychopathology even in the euthyroid state, the mechanisms involved remain unclear. We hypothesized that activated microglia might disrupt synapses, resulting in cognitive disturbance in the context of euthyroid HT, and designed the present study to test this hypothesis. METHODS: Experimental HT model was induced by immunizing NOD mice with thyroglobulin and adjuvant twice. Morris Water Maze was measured to determine mice spatial learning and memory. The synaptic parameters such as the synaptic density, synaptic ultrastructure and synaptic-markers (SYN and PSD95) as well as the interactions of microglia with synapses were also determined. RESULTS: HT mice had poorer performance in Morris Water Maze than controls. Concurrently, HT resulted in a significant reduction in synapse density and ultrastructure damage, along with decreased synaptic puncta visualized by immunostaining with synaptophysin and PSD-95. In parallel, frontal activated microglia in euthyroid HT mice showed increased engulfment of PSD95 and EM revealed that the synaptic structures were visible within the microglia. These functional alterations in microglia corresponded to structural increases in their attachment to neuronal perikarya and a reduction in presynaptic terminals covering the neurons. CONCLUSION: Our results provide initial evidence that HT can induce synaptic loss in the euthyroid state with deficits might be attributable to activated microglia, which may underlie the deleterious effects of HT on spatial learning and memory.


Assuntos
Doença de Hashimoto , Microglia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos NOD , Microglia/patologia , Sinapses
5.
Ecotoxicol Environ Saf ; 231: 113189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35033875

RESUMO

The present study mimicked daily life exposure to plastic food package bags and evaluated its effects on the reproductive and neurobehavioral responses using zebrafish model. Gas chromatography-mass spectrometer (GC/MS) full scan analysis revealed that phthalic acid, isobutyl octyl ester (DEHP) and its metabolites were the main leachate from plastic bags. Our results demonstrated that during the eight weeks exposure, leaching from plastic bags treated with boiling water (P-high group) significantly affected the spawn egg production, embryo hatching and larval malformation rate. Cross-spawning trails between zebrafish collected from the controls and P-high group at the end of eight weeks showed that these adverse effects were more severe in the offspring derived from paternal exposure than those derived from the maternal exposure, suggesting leached chemicals may have a more pronounced effect in sperm than in eggs. In addition, P-high group male testis weight, sperm motility and sperm swimming velocities were decreased significantly. After eight weeks treatment, neurobehavioral tests demonstrated significant changes in the swimming speed during free swimming and light-dark stimulation in the adult zebrafish from P-high group, with the effects being more severe in the males than females. P-high group males also showed altered response in the light/dark explore and mirror attacks assays.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Embalagem de Alimentos , Masculino , Plásticos/toxicidade , Reprodução , Motilidade dos Espermatozoides , Poluentes Químicos da Água/toxicidade
6.
Thyroid ; 31(3): 482-493, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32907517

RESUMO

Background: Although studies have reported an increased risk for cognitive disorders in Hashimoto's thyroiditis (HT) patients, even in the euthyroid state, the mechanisms involved remain unclear. The hippocampus is a classic brain region associated with cognitive function, among which the formation of long-term potentiation (LTP) in the Schaffer collateral-CA1 pathway plays an important role in the process of learning and memory. Therefore, this study established a euthyroid HT model in mice and investigated whether and how HT itself has the ability to trigger LTP alterations accompanied by learning and memory abnormality. Methods: An experimental euthyroid HT model was established in NOD mice through immunization with porcine thyroglobulin (Tg). Morris water maze was measured to determine mice spatial learning and memory. We investigated the effect of HT on synaptic transmission and high-frequency stimulation-induced LTP in the Schaffer collateral-CA1 synapse of mice hippocampus in vivo. Then, animals were sacrificed for thyroid-related parameter measure as well as detection of cellular and molecular events associated with the induction of LTP. Results: HT mice showed intrathyroidal lymphocyte infiltration and rising serum thyroid autoantibody levels accompanied by normal thyroid function. The HT mice had poorer performance in Morris water maze than controls. These alterations were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. The integrity of the synaptic structure is the premise for the production of LTP. As detected by transmission electron microscopy, the ultrastructure of synapse and astrocyte in the hippocampus were impaired in euthyroid HT mice. Additionally, Western blot and real-time polymerase chain reaction analyses confirmed that in HT mice, GS, GLAST, and GLT-1, key elements in glutamate-glutamine circulation located in astrocyte, were downregulated, accompanied by elevated levels of glutamate in the hippocampus, which impaired the material basis for LTP induction. NMDR2B expression in the hippocampus was also downregulated. Conclusion: HT can induce damage of LTP in the hippocampal Schaffer collateral-CA1 pathway in the euthyroid state, and this can be attributed, at least partly, to astrocytes impairment, which may underlie the deleterious effects of HT itself on hippocampal-dependent learning and memory function.


Assuntos
Astrócitos/patologia , Comportamento Animal , Região CA1 Hipocampal/fisiopatologia , Cognição , Disfunção Cognitiva/etiologia , Doença de Hashimoto/complicações , Potenciação de Longa Duração , Memória , Animais , Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Doença de Hashimoto/imunologia , Camundongos Endogâmicos NOD , Teste do Labirinto Aquático de Morris , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Reprod Biol Endocrinol ; 17(1): 94, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729993

RESUMO

BACKGROUND: Although thyroid dysfunction caused by Hashimoto's thyroiditis (HT) is believed to be related to implantation failure due to the underdevelopment of the receptive uterus, it is unknown whether HT itself, even in the euthyroid state, impairs embryo implantation associated with endometrial receptivity defects. To address whether HT itself can affect endometrial receptivity accompanied by implantation alterations, a euthyroid HT model was established in mice. METHODS: Female NOD mice were immunized twice with thyroglobulin and adjuvant to induce the experimental HT model. Four weeks after the second treatment, the mice were normally mated, and pregnant ones were sacrificed in implantation window for thyroid-related parameter and steroid hormones measurements by electrochemiluminescence immunoassay and enzyme-linked immunosorbent assay and implantation site number calculation by uptake of Chicago Blue dye. In addition, certain morphological features of endometrial receptivity were observed by hematoxylin-eosin staining and scanning electron microscopy, and the expression of other receptivity markers were analyzed by immunohistochemistry, RT-qPCR or Western Blot. RESULTS: HT mice displayed intrathyroidal monocyte infiltration and elevated serum thyroid autoantibody levels without thyroid dysfunction, defined as euthyroid HT in humans. Euthyroid HT resulted in implantation failure, fewer pinopodes, retarded pinopode maturation, and inhibited expression of receptivity markers: estrogen receptor α (ERα), integrin ß3, leukemia inhibitory factor (LIF), and cell adhesion molecule-1 (ICAM-1). Interestingly, despite this compromised endometrial receptivity response, no statistical differences in serum estradiol or progesterone level between groups were found. CONCLUSIONS: These findings are the first to indicate that HT induces a nonreceptive endometrial milieu in the euthyroid state, which may underlie the detrimental effects of HT itself on embryo implantation.


Assuntos
Biomarcadores/metabolismo , Implantação do Embrião , Endométrio/fisiopatologia , Doença de Hashimoto/fisiopatologia , Animais , Endométrio/metabolismo , Endométrio/ultraestrutura , Estradiol/sangue , Feminino , Expressão Gênica , Doença de Hashimoto/sangue , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Masculino , Camundongos Endogâmicos NOD , Microscopia Eletrônica de Varredura , Gravidez , Testosterona/sangue , Tireotropina/sangue
8.
J Neuroinflammation ; 15(1): 299, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373627

RESUMO

BACKGROUND: Although studies have reported an increased risk for mood disorders in Hashimoto's thyroiditis (HT) patients even in the euthyroid state, the mechanisms involved remain unclear. Neuroinflammation may play a key role in the etiology of mood disorders in humans and behavioral disturbances in rodents. Therefore, this study established a euthyroid HT model in mice and investigated whether HT itself was capable of triggering neuroinflammation accompanied by emotional alterations. METHODS: Experimental HT was induced by immunizing NOD mice with thyroglobulin and adjuvant twice. Four weeks after the last challenge, mice were tested for anxiety-like behavior in the open field and elevated plus maze tests and depression-like behavior in the forced swimming and tail suspension tests. Then, animals were sacrificed for thyroid-related parameter measure as well as detection of cellular and molecular events associated with neuroinflammation. The changes in components of central serotonin signaling were also investigated. RESULTS: HT mice showed intrathyroidal monocyte infiltration and rising serum thyroid autoantibody levels accompanied by normal thyroid function, which defines euthyroid HT in humans. These mice displayed more anxiety- and depressive-like behaviors than controls. HT mice further showed microglia and astrocyte activation in the frontal cortex detected by immunohistochemistry, real-time RT-PCR, and transmission electron microscopy (TEM). These observations were also accompanied by enhanced gene expression of proinflammatory cytokines IL-1ß and TNF-α in the frontal cortex. Despite this inflammatory response, no signs of neuronal apoptosis were visible by the TUNEL staining and TEM in the frontal cortex of HT mice. Additionally, IDO1 and SERT, key serotonin-system-related genes activated by proinflammatory cytokines, were upregulated in HT mice, accompanied by reduced frontal cortex serotonin levels. CONCLUSIONS: Our results are the first to suggest that HT induces neuroinflammation and alters related serotonin signaling in the euthyroid state, which may underlie the deleterious effects of HT itself on emotional function.


Assuntos
Sintomas Afetivos/etiologia , Encefalite/etiologia , Doença de Hashimoto/complicações , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/patologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Adjuvante de Freund/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Hashimoto/etiologia , Doença de Hashimoto/patologia , Elevação dos Membros Posteriores , Marcação In Situ das Extremidades Cortadas , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/patologia , Neurônios/ultraestrutura , Natação/psicologia
9.
Mol Med Rep ; 16(3): 3233-3241, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28713915

RESUMO

The aim of the present study was to observe the effects of the concurrent administration of thyroxine (T4) and an acetylcholinesterase (AChE) inhibitor, donepezil (DON), on the hypothyroidism­induced ultrastructural changes of the prefrontal cortex (PFC) in adult rats. The acetylcholine (ACh) content and AChE activity was assessed, as well as the expressions of synaptotagmin­1 (syt­1) and SNAP­25 were analyzed in the rats. Adding 0.05% propylthiouracil to rats' drinking water induced a hypothyroid rat model. The animals were treated with T4 and DON administered separately or in combination from the fifth week. Transmission electron microscope analysis revealed that hypothyroidism induced marked ultrastructural changes, including the neurons, the synapses and the myelin sheath in the PFC. T4 or DON treatment improved the morphologic features of the PFC, and the performance of the T4 combined DON group was the closest to the control group. Moreover, hypothyroidism significantly decreased the content of ACh (29.8%) and activity of AChE (27.8%), which were restored to control values by T4 admi-nistration. In addition, DON treatment restored ACh content to normal. At the protein level, hypothyroidism increased the levels of syt­1 and SNAP­25 in the PFC, both of which were not restored to control values following T4 administration, while concurrent administration of T4 and DON was able to induce this effect. These results suggested that adult­onset hypothyroidism induce morphological, biochemical and molecular alterations in the PFC, combined administration of T4 and DON induce plastic changes in the PFC, different from that of the standard T4 therapy, and that the DON treatment may facilitate the recovery of synaptic protein impairments induced by hypothyroidism.


Assuntos
Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/fisiopatologia , Indanos/administração & dosagem , Indanos/uso terapêutico , Plasticidade Neuronal , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Córtex Pré-Frontal/fisiopatologia , Tiroxina/administração & dosagem , Tiroxina/uso terapêutico , Envelhecimento , Animais , Donepezila , Hipotireoidismo/sangue , Indanos/farmacologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Sprague-Dawley , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Hormônios Tireóideos/sangue , Tiroxina/farmacologia
10.
Int J Clin Exp Med ; 8(10): 17922-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770386

RESUMO

The study aims to observe the impacts of thyroxine (T4) combined with donepezil (DON) on hippocampal ultrastructures and expressions of synaptotagmin-1 and SNAP-25 in adult rats with hypothyroidism. All rats were randomly divided into five groups: the normal control group (CON), the hypothyroidism group (Hypo), the T4 treatment group (T4), the DON treatment group (DON) and the T4+DON combined treatment group (T4+DON). Technique of Electron Microscope (TEM) was used to observe the hippocampal ultrastructures of each group, Western blot and real-time RT-PCR were performed to analyze the protein and mRNA expressions of syt-1 and SNAP-25 in the hippocampus of each group. TEM revealed that the Hypo group exhibited the significant vacuolar degeneration of mitochondria in the hippocampal neurons, the free ribosomes were sparse, the synaptic structures were damaged, and the number of synaptic vesicles was reduced, the above injuries in the T4 or DON group were improved, and the performance of the T4+DON group was the most close to the CON group. From the protein and mRNA levels, the dorsal hippocampal syt-1 expression of the Hypo group was significantly reduced, while SNAP-25 was significantly increased, the expressions were partially recovered after the T4 treatment, and the T4+DON combined treatment made the expression return to normal. The adult hypothyroid rats exhibited pathological damages in the hippocampal ultrastructures, the expression of syt-1 was downregulated, while that of SNAP-25 was upregulated, the T4+DON combined therapy could repair the above injuries, and the roles were better than the single drug treatment.

11.
Exp Ther Med ; 7(3): 529-536, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24520241

RESUMO

Adult-onset hypothyroidism induces various impairments in hippocampus-dependent cognitive function, in which numerous synaptic proteins and neurotransmitters are involved. Donepezil (DON), an acetylcholinesterase inhibitor, has been shown to be efficient in improving cognitive function. The aim of the present study was to investigate the effects of adult-onset hypothyroidism on the expression levels of the synaptic proteins syntaxin-1 and munc-18, as well as the content of the neurotransmitter acetylcholine (ACh) in the hippocampus. In addition, the study explored the effects of thyroxin (T4) and DON treatment on the altered parameters. The study involved 55 Sprague-Dawley rats that were randomly divided into five groups: Control, hypothyroid (0.05% 6-n-propyl-2-thiouracil; added to the drinking water), hypothyroid treated with T4 (6 µg/100 g body weight once daily; intraperitoneal injection), hypothyroid treated with DON (0.005%; added to the drinking water) and hypothyroid treated with a combination of the two drugs (6 µg/100 g T4 and 0.005% DON). The concentration of ACh was determined in the homogenized hippocampus of each animal by alkaline hydroxylamine colorimetry. The protein levels of syntaxin-1 and munc-18 were determined by immunohistochemistry. The results showed that the content of ACh in the hippocampi of the hypothyroid rats was significantly decreased compared with that in the controls and that T4 monotherapy and DON administration restored the ACh content to normal values. In the hippocampi of the hypothyroid group, munc-18 was expressed at significantly lower levels, while the expression levels of syntaxin-1 were increased compared with the levels in the control group. Treatment with T4 alone restored the expression of syntaxin-1 but failed to normalize munc-18 expression levels. The co-administration of T4 and DON returned the munc-18 levels to normal values. These observations indicate that adult-onset hypothyroidism induces alterations in the levels of munc-18, syntaxin-1 and ACh in the hippocampus. Syntaxin-1 and ACh levels were restored by T4 monotherapy while munc-18 levels were not. In addition, the co-administration of T4 and DON resulted in more effective restoration than either alone. The thyroid hormone has a direct effect on metabolism of hippocampal ACh in adult rats and DON is helpful for treatment of synaptic protein impairment induced by hypothyroidism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA