Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Immunol ; 15: 1404640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007128

RESUMO

Introduction: Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied. Methodology: In this study, we assess the impact of cell label derivation on H&E model performance, with CD3+ T-cells in lung cancer tissues as a proof-of-concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining models: one trained with cell labels obtained from the same tissue section as the H&E-stained section (the 'same-section' model) and one trained on cell labels from an adjacent tissue section (the 'serial-section' model). Results: We show that the same-section model exhibited significantly improved prediction performance compared to the 'serial-section' model. Furthermore, the same-section model outperformed the serial-section model in stratifying lung cancer patients within a public lung cancer cohort based on survival outcomes, demonstrating its potential clinical utility. Discussion: Collectively, our findings suggest that employing ground truth cell labels obtained through the same-section approach boosts immunophenotyping DL solutions.


Assuntos
Aprendizado Profundo , Imunofenotipagem , Neoplasias Pulmonares , Coloração e Rotulagem , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Coloração e Rotulagem/métodos , Biomarcadores Tumorais/metabolismo , Masculino , Linfócitos T/imunologia , Feminino
2.
Nat Commun ; 15(1): 3209, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615033

RESUMO

The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.

3.
Patterns (N Y) ; 5(3): 100929, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38487802

RESUMO

We described a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Within this challenge, we provided the DRAC datset, an ultra-wide optical coherence tomography angiography (UW-OCTA) dataset (1,103 images), addressing three primary clinical tasks: diabetic retinopathy (DR) lesion segmentation, image quality assessment, and DR grading. The scientific community responded positively to the challenge, with 11, 12, and 13 teams submitting different solutions for these three tasks, respectively. This paper presents a concise summary and analysis of the top-performing solutions and results across all challenge tasks. These solutions could provide practical guidance for developing accurate classification and segmentation models for image quality assessment and DR diagnosis using UW-OCTA images, potentially improving the diagnostic capabilities of healthcare professionals. The dataset has been released to support the development of computer-aided diagnostic systems for DR evaluation.

4.
J Am Chem Soc ; 146(6): 3785-3795, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295018

RESUMO

The size-dependent and collective physical properties of nanocrystals (NCs) and their self-assembled superlattices (SLs) enable the study of mesoscale phenomena and the design of metamaterials for a broad range of applications. However, the limited mobility of NC building blocks in dried NCSLs often hampers the potential for employing postdeposition methods to produce high-quality NCSLs. In this study, we present tailored promesogenic ligands that exhibit a lubricating property akin to thermotropic liquid crystals. The lubricating ability of ligands is thermally triggerable, allowing the dry solid NC aggregates deposited on the substrates with poor ordering to be transformed into NCSLs with high crystallinity and preferred orientations. The interplay between the dynamic behavior of NCSLs and the molecular structure of the ligands is elucidated through a comprehensive analysis of their lubricating efficacy using both experimental and simulation approaches. Coarse-grained molecular dynamic modeling suggests that a shielding layer from mesogens prevents the interdigitation of ligand tails, facilitating the sliding between outer shells and consequently enhancing the mobility of NC building blocks. The dynamic organization of NCSLs can also be triggered with high spatial resolution by laser illumination. The principles, kinetics, and utility of lubricating ligands could be generalized to unlock stimuli-responsive metamaterials from NCSLs and contribute to the fabrication of NCSLs.

5.
Bull Environ Contam Toxicol ; 110(6): 114, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316587

RESUMO

Many studies have focused on mercury (Hg) accumulation in both aquatic and terrestrial organisms, but the effects of aquatic Hg on terrestrial organisms have rarely been documented. Here we report the accumulation of Hg in two species of spiders, Argiope bruennichi, inhabiting paddy fields, and Nephila clavata, inhabiting small forests in the riparian zones of two hydroelectric reservoirs in Guiyang, southwest China. The mean concentration of total mercury (THg) was higher in N. clavata (0.38 mg kg-1) than in A. bruennichi (0.20 mg kg-1). The monthly average THg in N. clavata, collected consecutively from May to October, and the highest values for THg in June (1.2 mg kg-1) could be related to the emergence of aquatic insects during early summer, suggesting that emerging insects play a crucial role in the accumulation of Hg in riparian spiders. The high values could also be attributable to the different times of spider sampling or individual differences.


Assuntos
Mercúrio , Aranhas , Animais , China , Florestas , Insetos
6.
Educ Technol Res Dev ; : 1-21, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37359487

RESUMO

Notwithstanding the advantages of incorporating Augmented Reality (AR) in education, AR's concrete uses as compared to other technologies are not fully recognised. Moreover, many of the existing studies have neglected to examine the impact of pedagogy and its corresponding instructional models, whilst implementing AR in teaching and learning. In leveraging the affordances of AR, an inquiry-based learning framework, referred to as QIMS, was proposed in this study. A learning package was developed on the topic of plant reproduction for primary 5 students (aged 11-12) based on the QIMS framework. Using a quasi-experimental approach, this study evaluated three conditions (AR and QIMS; QIMS; Non-AR and Non-QIMS) for a series of science lessons in a primary school. 117 students took part in this study. The quantitative results showed that although there was no statistically significant difference in students' academic performance when AR was used, students' self-directed learning and creative thinking skills increased significantly after partaking in the QIMS inquiry-based lessons. The usage of AR and QIMS had a significant effect in increasing students' critical thinking and knowledge creation efficacy skills. Moreover, in view of students' academic outcomes, the integration of QIMS and AR proved to be more beneficial to low-progress students. Qualitative analysis of the interview data from teachers and students aids in accounting for the quantitative results and indicate productive implementation strategies. The findings of this study will guide the design of future AR interventions, by providing insights for both researchers and practitioners on how to integrate and implement AR with pedagogical approaches.

7.
Adv Mater ; 35(33): e2301323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165983

RESUMO

A top-down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well-defined sizes, shapes, and compositions that are often not accessible by wet-chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template-assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size- and shape-engineered templates and organize into open or close-packed multi-NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal-shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close-packed architectures highlights that introduction of a center NP to form close-packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation-dependent scattering response.

8.
IEEE Comput Graph Appl ; 43(3): 84-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195828

RESUMO

On October 21, 2022, the 21st IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2022) was successfully completed in Singapore. ISMAR is the leading international conference in the fields of augmented reality, mixed reality, and virtual reality. This was the first time that ISMAR was held in Southeast Asia and the first time in hybrid mode. ISMAR 2022 achieved a historically high number of papers and attendees, witnessing the steady growth of the community and the scientific contributions. In this article, we report the key outcomes, impressions, research trends, and lessons learned from the conference.

9.
ACS Nano ; 17(8): 7911-7919, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37022928

RESUMO

The process of dynamic self-organization of small building blocks is fundamental to the emergent function of living systems and is characteristic of their out-of-equilibrium homeostasis. The ability to control the interactions of synthetic particles in large groups could lead to the realization of analogous macroscopic robotic systems with microscopic complexity. Rotationally induced self-organization has been observed in biological systems and modeled theoretically, but studies of fast, autonomously moving synthetic rotors remain rare. Here, we report switchable, out-of-equilibrium hydrodynamic assembly and phase separation in suspensions of acoustically powered chiral microspinners. Semiquantitative modeling suggests that three-dimensionally (3D) complex spinners interact through viscous and weakly inertial (streaming) flows. The interactions between spinners were studied over a range of densities to construct a phase diagram, which included gaseous dimer pairing at low density, collective rotation and multiphase separation at intermediate densities, and ultimately jamming at high density. The 3D chirality of the spinners leads to self-organization in parallel planes, forming a three-dimensionally hierarchical system that goes beyond the 2D systems that have so far been modeled computationally. Dense mixtures of spinners and passive tracer particles also show active-passive phase separation. These observations are consistent with recent theoretical predictions of the hydrodynamic coupling between rotlets generated by autonomous spinners and provide an exciting experimental window to the study of colloidal active matter and microrobotic systems.

10.
J Am Chem Soc ; 145(11): 6280-6288, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912558

RESUMO

Multicomponent nanoparticle superlattices (SLs) promise the integration of nanoparticles (NPs) with remarkable electronic, magnetic, and optical properties into a single structure. Here, we demonstrate that heterodimers consisting of two conjoined NPs can self-assemble into novel multicomponent SLs with a high degree of alignment between the atomic lattices of individual NPs, which has been theorized to lead to a wide variety of remarkable properties. Specifically, by using simulations and experiments, we show that heterodimers composed of larger Fe3O4 domains decorated with a Pt domain at one vertex can self-assemble into an SL with long-range atomic alignment between the Fe3O4 domains of different NPs across the SL. The SLs show an unanticipated decreased coercivity relative to nonassembled NPs. In situ scattering of the self-assembly reveals a two-stage mechanism of self-assembly: translational ordering between NPs develops before atomic alignment. Our experiments and simulation indicate that atomic alignment requires selective epitaxial growth of the smaller domain during heterodimer synthesis and specific size ratios of the heterodimer domains as opposed to specific chemical composition. This composition independence makes the self-assembly principles elucidated here applicable to the future preparation of multicomponent materials with fine structural control.

11.
Adv Mater ; 35(34): e2108104, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34897837

RESUMO

Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.

12.
ACS Appl Mater Interfaces ; 15(3): 4294-4302, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36507852

RESUMO

Colloidal quantum dots (QDs) are promising candidates for single-photon sources with applications in photonic quantum information technologies. Developing practical photonic quantum devices with colloidal materials, however, requires scalable deterministic placement of stable single QD emitters. In this work, we describe a method to exploit QD size to facilitate deterministic positioning of single QDs into large arrays while maintaining their photostability and single-photon emission properties. CdSe/CdS core/shell QDs were encapsulated in silica to both increase their physical size without perturbing their quantum-confined emission and enhance their photostability. These giant QDs were then precisely positioned into ordered arrays using template-assisted self-assembly with a 75% yield for single QDs. We show that the QDs before and after assembly exhibit antibunching behavior at room temperature and their optical properties are retained after an extended period of time. Together, this bottom-up synthetic approach via silica shelling and the robust template-assisted self-assembly offer a unique strategy to produce scalable quantum photonics platforms using colloidal QDs as single-photon emitters.

13.
ACS Nano ; 16(8): 12377-12389, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35894585

RESUMO

Understanding the nature of hot carrier pathways following surface plasmon excitation of heterometallic nanostructures and their mechanistic prevalence during photoelectrochemical oxidation of complex hydrocarbons, such as ethanol, remains challenging. This work studies the fate of carriers from Au nanorods before and after the presence of reductively photodeposited Pd at the single-particle level using scattering and emission spectroscopy, along with ensemble photoelectrochemical methods. A sub-2 nm epitaxial Pd0 shell was reductively grown onto colloidal Au nanorods via hot carriers generated from surface plasmon resonance excitation in the presence of [PdCl4]2-. These bimetallic Pd-Au nanorod architectures exhibited 14% quenched emission quantum yields and 9% augmented plasmon damping determined from their scattering spectra compared to the bare Au nanorods, consistent with injection/separation of intraband hot carriers into the Pd. Absorbed photon-to-current efficiency in photoelectrochemical ethanol oxidation was enhanced 50× from 0.00034% to 0.017% due to the photodeposited Pd. Photocurrent during ethanol oxidation improved 13× under solar-simulated AM1.5G and 40× for surface plasmon resonance-targeted irradiation conditions after photodepositing Pd, consistent with enhanced participation of intraband-excited sp-band holes and desorption of ethanol oxidation reaction intermediates owing to photothermal effects.

14.
Angew Chem Int Ed Engl ; 61(30): e202204209, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510688

RESUMO

Organic room-temperature long-persistent luminescent materials are promising light-emitting materials for encryption, architectural decoration, organic solar cells, and biomedical applications. However, their unstable structures and thermal- and humidity-induced emission quenching have greatly limited their utility and reliability. Here, we report a metal-free nonconjugated copolymer that possesses stable photoluminescence at both high temperature and humidity. The room-temperature long-persistent luminescence (LPL) of this copolymer lasts for more than 15 s and can be recovered in high humidity conditions by heating to remove moisture. Copolymer LPL can be achieved with various excitation wavelengths, ranging from ultraviolet to near-infrared, and the LPL color can be adjusted accordingly. The high initial LPL intensity and ultrafast filling time of the copolymer makes it suitable for low flicker alternating current-driven light-emitting diodes (AC-LEDs).

15.
Breast Cancer Res Treat ; 193(1): 121-138, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262831

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) plays an important role in the management of locally advanced breast cancer. It allows for downstaging of tumors, potentially allowing for breast conservation. NAC also allows for in-vivo testing of the tumors' response to chemotherapy and provides important prognostic information. There are currently no clearly defined clinical models that incorporate imaging with clinical data to predict response to NAC. Thus, the aim of this work is to develop a predictive AI model based on routine CT imaging and clinical parameters to predict response to NAC. METHODS: The CT scans of 324 patients with NAC from multiple centers in Singapore were used in this study. Four different radiomics models were built for predicting pathological complete response (pCR): first two were based on textural features extracted from peri-tumoral and tumoral regions, the third model based on novel space-resolved radiomics which extract feature maps using voxel-based radiomics and the fourth model based on deep learning (DL). Clinical parameters were included to build a final prognostic model. RESULTS: The best performing models were based on space-resolved and DL approaches. Space-resolved radiomics improves the clinical AUCs of pCR prediction from 0.743 (0.650 to 0.831) to 0.775 (0.685 to 0.860) and our DL model improved it from 0.743 (0.650 to 0.831) to 0.772 (0.685 to 0.853). The tumoral radiomics model performs the worst with no improvement of the AUC from the clinical model. The peri-tumoral combined model gives moderate performance with an AUC of 0.765 (0.671 to 0.855). CONCLUSIONS: Radiomics features extracted from diagnostic CT augment the predictive ability of pCR when combined with clinical features. The novel space-resolved radiomics and DL radiomics approaches outperformed conventional radiomics techniques.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Prognóstico , Estudos Retrospectivos
16.
ACS Appl Mater Interfaces ; 14(10): 12630-12639, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230095

RESUMO

Human respiration is accompanied with abundant physiological and pathological information, such as the change in ammonia (NH3) content, which is related to chronic kidney disease (CKD); hence, monitoring the breathing behavior helps in health assessment and illness prediction. In this work, a wearable respiration sensor based on CeO2@polyaniline (CeO2@PANI) nanocomposites that underwent a hydrogen plasma treatment is developed. The results unambiguously show that the response of the corresponding nanocomposites is significantly enhanced from 165 to 670% to 100 ppm NH3 compared to the counterpart that did not undergo hydrogen plasma treatment and even reaches 24% to 50 ppb NH3, suggesting its fascinating capability of detecting the trace level of NH3 in human breathing. The superior response for NH3 is ascribed to the stable oxygen vacancies produced by the hydrogen plasma treatment. Furthermore, the clinical tests for patients with uremia suggest that the as-designed sensor has potential applications in clinical monitoring for CKD. Herein, this work offers a new strategy to obtain respiration sensors with high performance and provides a feasible approach for health evaluation and disease monitoring of patients with CKD.


Assuntos
Nanocompostos , Insuficiência Renal Crônica , Dispositivos Eletrônicos Vestíveis , Amônia , Humanos , Insuficiência Renal Crônica/diagnóstico , Respiração
17.
Inorg Chem ; 61(7): 3223-3229, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35124961

RESUMO

Fluorescent anti-counterfeiting materials have been widely studied due to their high resolution and convenient identification by direct visualization of the color output. To date, the anti-counterfeiting technology of single ultraviolet excitation mode still has security problems because the single mode could be imitated easily. Here, we have successfully developed four modes of anti-counterfeiting from Eu2+ and Er3+ co-doped Ba2Zr2Si3O12 phosphors with photo, long persistent, photo-stimulated, and up-conversion luminescence behavior. The as-fabricated phosphors can emit an intense blue-green luminescence originating from the characteristic transition of Eu2+ ions and exhibit a blue-green long persistent luminescence phenomenon. Moreover, the enhancement of photo-stimulated luminescence that contributed to the effectively increased trap concentration is observed, along with the produced up-conversion phenomenon thanks to the introduction of Er3+ ions. Notably, the fluorescence rapidly changes from blue-green to stable green luminescence with the delay of excitation time under the excitation of a 980 nm laser diode. Herein, this work realizes the fast down- to up-conversion luminescence output over time, which provides the basis for its possible application in advanced multi-mode anti-counterfeiting.

18.
Int J Bioprint ; 8(1): 406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187272

RESUMO

Current research of designing prosthetic robotic hands mainly focuses on improving their functionality by devising new mechanical structures and actuation systems. Most of existing work relies on a single structure/system (e.g., bone-only or tissue-only) and ignores the fact that the human hand is composed of multiple functional structures (e.g., skin, bones, muscles, and tendons). This may increase the difficulty of the design process and lower the flexibility of the fabricated hand. To tackle this problem, this paper proposes a three-dimensional (3D) printable multi-layer design that models the hand with the layers of skin, tissues, and bones. The proposed design first obtains the 3D surface model of a target hand via 3D scanning, and then generates the 3D bone models from the surface model based on a fast template matching method. To overcome the disadvantage of the rigid bone layer in deformation, the tissue layer is introduced and represented by a concentric tube-based structure, of which the deformability can be explicitly controlled by a parameter. The experimental results show that the proposed design outperforms previous designs remarkably. With the proposed design, prosthetic robotic hands can be produced quickly with low cost and be customizable and deformable.

19.
Inorg Chem ; 60(24): 19365-19372, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34878768

RESUMO

Proper defect states are demonstrated to be beneficial to overcome thermal quenching of the corresponding phosphors. In this work, a cyan-emitting KGaGeO4/Bi3+ phosphor with abundant defect states is reported, the emission intensity of which exhibits an abnormal thermal quenching performance under excitation with different photon energies. A 100% emission intensity is achieved at 393 K under 325 nm excitation compared with that at room temperature, while significantly enhanced intensities of 207% at 393 K and even 351% at 513 K under 365 nm excitation are recorded. The excellent thermal stability performance is confirmed to be not only related to the direct energy transfer from the defect states but also depended on the efficiency of capturing carriers for the trap centers, which is clarified in this work. In addition, the mechanism of the double tunneling process of carriers from trap centers to luminescence centers and luminescence centers to trap centers is studied. These results are believed to provide new insights into the thermal stability of the corresponding fluorescent materials and could inspire studies to further explore novel fluorescent materials with high thermal stability based on defect state engineering.

20.
Micromachines (Basel) ; 12(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577767

RESUMO

In the field of robotic hand design, soft body and anthropomorphic design are two trends with a promising future. Designing soft body anthropomorphic robotic hands with human-like grasping ability, but with a simple and reliable structure, is a challenge that still has not been not fully solved. In this paper, we present an anatomically correct robotic hand 3D model that aims to realize the human hand's functionality using a single type of 3D-printable material. Our robotic hand 3D model is combined with bones, ligaments, tendons, pulley systems, and tissue. We also describe the fabrication method to rapidly produce our robotic hand in 3D printing, wherein all parts are made by elastic 50 A (shore durometer) resin. In the experimental section, we show that our robotic hand has a similar motion range to a human hand with substantial grasping strength and compare it with the latest other designs of anthropomorphic robotic hands. Our new design greatly reduces the fabrication cost and assembly time. Compared with other robotic hand designs, we think our robotic hand may induce a new approach to the design and production of robotic hands as well as other related mechanical structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA