Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Carcinog ; 59(8): 897-907, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32319143

RESUMO

Lactate dehydrogenase isozyme (LDH) is a tetramer constituted of two isoforms, LDHA and LDHB, the expression of which is associated with cell metabolism and cancer progression. Our previous study reveals that CC-chemokine ligand-18 (CCL18) is involved in progression of prostate cancer (PCa).This study aims to investigate how CCL18 regulates LDH isoform expression, and therefore, contributes to PCa progression. The data revealed that the expression of LDHA was upregulated and LDHB was downregulated in PCa cells by CCL18 at both messenger RNA and protein levels. The depletion of CCR8 reduced the ability of CCL18 to promote the proliferation, migration, and lactate production of PCa cells. Depletion of a CCR8 regulated transcription factor, ARNT, significantly reduced the expression of LDHA. In addition, The Cancer Genome Atlas dataset analyses revealed a positive correlation between CCR8 and ARNT expression. Two dimension difference gel electrophoresis revealed that the LDHA/LDHB ratio was increased in the prostatic fluid of patients with PCa and PCa tissues. Furthermore, increased LDHA/LDHB ratio was associated with poor clinical outcomes of patients with PCa. Together, our results indicate that the CCR8 pathway programs LDH isoform expression in an ARNT dependent manner and that the ratio of LDHA/LDHB has the potential to serve as biomarkers for PCa diagnosis and prognosis.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Biomarcadores Tumorais/metabolismo , Quimiocinas CC/metabolismo , Regulação Neoplásica da Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Neoplasias da Próstata/patologia , Receptores CCR8/metabolismo , Apoptose , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Biomarcadores Tumorais/genética , Proliferação de Células , Quimiocinas CC/genética , Humanos , Isoenzimas , L-Lactato Desidrogenase/genética , Masculino , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores CCR8/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
2.
Pathol Res Pract ; 215(8): 152464, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31176575

RESUMO

BACKGROUND: Accumulating studies reported that 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) may function as either an oncogene or a tumor suppressor in various human cancers. However, its involvement in prostate cancer (PCa) remains unknown. Therefore, the aim of this study was to investigate the clinical significance of HMGCS2 expression and its functions in PCa. METHODS: Expression levels of HMGCS2 mRNA and protein were detected by quantitative Polymerase Chain Reaction (qPCR), Western blot and immunohistochemistry, respectively. Associations of HMGCS2 expression with various clinicopathological features and patients' prognosis of PCa were statistically evaluated. Roles of HMGCS2 dysregulation in cell proliferation, invasion and migration of PCa cell lines were also determined. RESULTS: HMGCS2 protein expression was significantly reduced in PCa tissues compared to adjacent benign prostate tissues at protein levels (P < 0.05). Clinically, low HMGCS2 mRNA expression was dramatically associated with high Gleason score (GS) and pathological grade, as well as the presence of distant metastasis of PCa patients. In addition, PCa patients with low HMGCS2 mRNA expression more frequently had shorter disease-free survival and biochemical recurrence-free survival (all P < 0.05). HMGCS2 expression was identified as an independent factor to predict both disease-free and biochemical recurrence-free survivals of PCa patients. Moreover, loss-of-function experiments demonstrated that HMGCS2 knockdown-expression promotes cell proliferation, colony formation, invasion and migration of PCa cells in vitro and lower the apoptotic rate of PCa cells in vitro. CONCLUSIONS: Our data indicate that HMGCS2 may be capable of predicting the risk of biochemical recurrence in PCa patients after radical prostatectomy and functions as a tumor suppressor in PCa cancer, implying its related pathway potential as a drug candidate in anti-PCa therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Hidroximetilglutaril-CoA Sintase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Genes Supressores de Tumor/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores/métodos , Próstata/patologia , Neoplasias da Próstata/diagnóstico
3.
Cell Signal ; 59: 152-162, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30926388

RESUMO

Immunotherapy has made great breakthroughs in the field of cancer. However, the immunotherapeutic effect of prostate cancer is unsatisfactory. We found that the expression of TRIB1 was significantly correlated with the infiltration of CD163+ macrophages in prostate cancer. This study focused on the effects of TRIB1 on macrophage polarization in the immune microenvironment of prostate cancer. RNA sequencing analysis demonstrated that TRIB1 has significant effects on the regulation of the nuclear factor (NF)-κB signaling pathway and downstream cytokines. Flow cytometry and enzyme-linked immunosorbent assay were used to examine THP-1 cells cultured in conditioned medium from prostate cancer cells overexpressing TRIB1 and showed that overexpression of TRIB1 promoted the secretion of CXCL2 and interleukin (IL)8 by PC3 cells, which increased the secretion of IL12 by THP-1 cells as well as the expression of CD163 on THP-1 cells. IKB-zeta, regulated by TRIB1, was expressed in PC3 cells but was barely detectable in DU145 cells. The reductions in CXCL2 and IL8 by the inhibition of TRIB1 were rescued by the deletion of IKB-zeta. Here we showed that TRIB1 promoted the secretion of cytokines from prostate cancer cells and induced the differentiation of monocytes/macrophages into M2 macrophages.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/imunologia , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Microambiente Tumoral/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiocina CXCL2/imunologia , Humanos , Ativação de Macrófagos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/imunologia , Células PC-3 , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/metabolismo , Células THP-1
4.
Biomed Pharmacother ; 102: 531-538, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29587239

RESUMO

Serine/Arginine-Rich Protein-Specific Kinase-2 (SRSF protein kinase-2, SRPK2) is up-regulated in multiple human tumors. However, the expression, function and clinical significance of SRPK2 in prostate cancer (PCa) has not yet been understood. We therefore aimed to determine the association of SRPK2 with tumor progression and metastasis in PCa patients in our present study. The expression of SRPK2 was detected by some public datasets and validated using a clinical tissue microarray (TMA) by immunohistochemistry. The association of SRPK2 expression with various clinicopathological characteristics of PCa patients was subsequently statistically analyzed based on the The Cancer Genome Atlas (TCGA) dataset and clinical TMA. The effects of SRPK2 on cancer cell proliferation, migration, invasion, cell cycle progression, apoptosis and tumor growth were then respectively investigated using in vitro and in vivo experiments. First, public datasets showed that SRPK2 expression was greater in PCa tissues when compared with non-cancerous tissues. Statistical analysis demonstrated that high expression of SRPK2 was significantly correlated with a higher Gleason Score, advanced pathological stage and the presence of tumor metastasis in the TCGA Dataset (all P < 0.01). Similar correlations between SRPK2 and a higher Gleason Score or advanced pathological stage were also identified in the TMA (P < 0.05). Kaplan-Meier curve analyses showed that the biochemical recurrence (BCR)-free time of PCa patients with SRPK2 high expression was shorter than for those with SRPK2 low expression (P < 0.05). Second, cell function experiments in PCa cell lines revealed that enhanced SRPK2 expression could promote cell proliferation, migration, invasion and cell cycle progression but suppress tumor cell apoptosis in vitro. Xenograft experiments showed that SRPK2 promoted tumor growth in vivo. In conclusion, our data demonstrated that SRPK2 may play an important role in the progression and metastasis of PCa, which suggests that it might be a potential therapeutic target for PCa clinical therapy.


Assuntos
Progressão da Doença , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Idoso , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int Urol Nephrol ; 49(5): 817-823, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28213802

RESUMO

PURPOSE: Abnormal spindle microtubule assembly (ASPM) gene was known to be linked with poor clinical prognosis in various tumors. However, the clinical significance of ASPM in prostate cancer (PCa) has not yet been understood. The purpose of this study was to determine the association of ASPM with tumor progression and prognosis in PCa patients. METHODS: The expression of ASPM at protein level in human PCa and non-cancerous prostate tissue was detected by immunohistochemical analysis, which was further validated by using microarray-based dataset (NCBI GEO: GSE21032 and The Cancer Genome Atlas (TCGA) dataset) at mRNA level. Subsequently, the association of ASPM expression with the clinicopathological characteristics of patients with PCa was then statistically analyzed. RESULTS: Immunohistochemistry and dataset analyses revealed that ASPM expression was significantly increased in the PCa tissues with high Gleason score. Additionally, as showed by two datasets, ASPM expression was significantly high expressed in the PCa tissues when compared with the non-cancerous tissues, especially in advanced PCa pathological stage. The upregulation of ASPM mRNA expression in the PCa tissues significantly correlated with the presence of tumor metastasis, shorter overall survival and prostate-specific antigen (PSA) failure. Furthermore, both univariate and multivariate analyses showed that the upregulation of ASPM was a potential predictor of poor biochemical recurrence (BCR)-free survival. CONCLUSIONS: Our data suggest that ASPM may play an important role in the progression of PCa. More importantly, the increased expression of ASPM may potentially predict poor BCR-free survival in patients with PCa.


Assuntos
Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Biópsia por Agulha , Estudos de Coortes , Bases de Dados Factuais , Progressão da Doença , Intervalo Livre de Doença , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias da Próstata/mortalidade , Análise de Sobrevida , Regulação para Cima
6.
Onco Targets Ther ; 9: 2211-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27143916

RESUMO

BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is a member of the spindle assembly checkpoint protein family, which has been proven to be associated with many kinds of cancers. The aim of this study was to investigate whether BUB1B was correlated with progression and prognosis in patients with prostate cancer (PCa) and how BUB1B regulated the proliferation, migration, and invasion of PCa cell lines. Compared to benign prostate cells and tissues, both messenger RNA and protein expressions of BUB1B were statistically increased in PCa cell lines and tumor tissues. In vitro studies revealed that BUB1B overexpression enhanced the proliferation, migration, and invasion ability of PCa cell lines, whereas depletion of BUB1B did not affect the cell functions. Microarray analysis showed the positive staining of BUB1B was upregulated in the higher Gleason score group, which also correlated with advanced clinicopathological stage, higher serum prostate-specific antigen, metastasis, overall survival, and prostate-specific antigen failure. Furthermore, the survival analysis indicated that high expression of BUB1B was an independent predictor for shorter biochemical recurrence-free survival, which had no effect on overall survival. BUB1B plays an important role in tumor growth and progression, which can lead to its use as a potential biomarker for the diagnosis and prognosis of PCa.

7.
Biomed Pharmacother ; 78: 116-120, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26898432

RESUMO

BACKGROUND: Protein regulator of cytokinesis 1 (PRC1) has been reported to be implicated into the completion of cytokinesis and is dys-regulated in a cancer-specific manner. However, it roles in human prostate cancer (PCa) remain unclear. In the current study, we aimed to investigate the expression pattern of PRC1 and its clinical significance in this malignancy. MATERIALS AND METHODS: PRC1 protein expression in human PCa and non-cancerous prostate tissues was detected by immunohistochemistry, which was validated by microarray-based Taylor data at mRNA level. Then, the associations of PRC1 expression with clinicopathological features and clinical outcome of PCa patients were statistically analyzed. RESULTS: PRC1 expression in PCa tissues, at both mRNA and protein levels, were significantly higher than those in non-cancerous prostate tissues. In addition, the PCa patients with PRC1 overexpression more frequently had high Gleason score, advanced pathological stage, positive metastasis, short overall survival time and positive PSA failure than those with low Gleason score, early pathological stage, negative metastasis, long overall survival time and negative PSA failure (all P<0.05). Moreover, PRC1 expression was identified as an unfavorable prognostic factor of biochemical recurrence-free survival in PCa patients (P<0.001). CONCLUSION: These findings suggest that the aberrant expression of PRC1 may predict biochemical recurrence in men with PCa highlighting its potential as a prognostic marker of this malignancy.


Assuntos
Proteínas de Ciclo Celular/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Proteínas de Ciclo Celular/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise Multivariada , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA