Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174664, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997017

RESUMO

The increasing frequency of high-temperature extremes threatens largemouth bass Micropterus salmoides, a significant fish for freshwater ecosystems and aquaculture. Our previous studies at the transcript level suggested that heat stress induces hepatic apoptosis in largemouth bass. In the current study, we sought to validate these findings and further investigate the role of the c-Jun N-terminal kinase (JNK)/P53 signaling in hepatic apoptosis under heat stress. First, heat treatments were conducted in vivo and in vitro under different temperatures: 28 °C, 32 °C, and 37 °C. In primary hepatocytes subjected to heat treatment, cell viability was evaluated via the Cell Counting Kit-8, while mitochondrial membrane potential and nuclear morphology were assessed through JC-1 and Hoechst 33258 staining, respectively. We observed reductions in both cell viability and mitochondrial membrane potential (ΔΨm), along with alterations in nuclear morphology, in primary hepatocytes exposed to heat stress at temperatures of 32 °C and 37 °C. Quantitative real-time PCR revealed significant alterations in the expression profiles of intrinsic apoptosis-related genes within liver tissues under heat stress. Immunohistochemistry analysis revealed that JNK1 signaling increased as the temperature increased, JNK2 expression increased only at 37 °C, and JNK3 expression did not change with temperature. We speculate that JNK1 and JNK2 have pro- and anti-apoptotic effects, respectively. Western blot analysis conducted on cultured hepatocytes further validated these findings. JNK inhibition reduced hepatocyte apoptosis, improved nuclear morphology, and maintained ΔΨm even after 37 °C treatment. These results not only confirm that heat stress led to intrinsic apoptosis of hepatocytes but also indicated that JNK1 could mediate P53 expression and activate caspase-dependent intrinsic apoptosis in largemouth bass hepatocytes under such conditions. This study illuminates the physiological responses of largemouth bass to acute heat stress, offering valuable insights into the potential impacts of climate change on freshwater fishes and the sustainability of aquaculture.

2.
Plant Dis ; 107(10): 3037-3050, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36890126

RESUMO

Among the most damaging diseases of rubber trees is anthracnose caused by the genus Colletotrichum, which leads to significant economic losses. Nonetheless, the specific Colletotrichum spp. that infect rubber trees in Yunnan Province, an important natural rubber base in China, have not been extensively investigated. Here, we isolated 118 Colletotrichum strains from rubber tree leaves exhibiting anthracnose symptoms in multiple plantations in Yunnan. Based on comparisons of their phenotypic characteristics and internal transcribed spacer ribosomal DNA sequences, 80 representative strains were chosen for additional phylogenetic analysis based on eight loci (act, ApMat, cal, CHS-1, GAPDH, GS, his3, and tub2), and nine species were identified. Colletotrichum fructicola, C. siamense, and C. wanningense were found to be the dominant pathogens causing rubber tree anthracnose in Yunnan. C. karstii was common, whereas C. bannaense, C. brevisporum, C. jinpingense, C. mengdingense, and C. plurivorum were rare. Among these nine species, C. brevisporum and C. plurivorum are reported for the first time in China, and two species are new to the world: C. mengdingense sp. nov. in the C. acutatum species complex and C. jinpingense sp. nov. in the C. gloeosporioides species complex. Their pathogenicity was confirmed with Koch's postulates by inoculating each species in vivo on rubber tree leaves. This study clarifies the geographic distribution of Colletotrichum spp. associated with anthracnose on rubber trees in representative locations of Yunnan, which is crucial for the implementation of quarantine measures.


Assuntos
Colletotrichum , Hevea , Hevea/genética , China , Filogenia , Doenças das Plantas , DNA Fúngico/genética , DNA Intergênico
3.
Front Microbiol ; 10: 2621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798557

RESUMO

Post-harvest wet coffee processing is a commonly applied method to transform coffee cherries into green coffee beans through depulping or demucilaging, fermentation, washing, soaking, drying, and dehulling. Multiple processing parameters can be modified and thus influence the coffee quality (green coffee beans and cup quality). The present study aimed to explore the impacts of these parameters, including processing type (depulping or demucilaging), fermentation duration, and application of soaking, on the microbial community dynamics, metabolite compositions of processing waters (fermentation and soaking) and coffee beans, and resulting cup quality through a multiphasic approach. A large-scale wet coffee processing experiment was conducted with Coffea arabica var. Catimor in Yunnan (China) in duplicate. The fermentation steps presented a dynamic interaction between constant nutrient release (mainly from the cherry mucilage) into the surrounding water and active microbial activities led by lactic acid bacteria, especially Leuconostoc and Lactococcus. The microbial communities were affected by both the processing type and fermentation duration. At the same time, the endogenous coffee bean metabolism remained active at different stages along the processing, as could be seen through changes in the concentrations of carbohydrates, organic acids, and free amino acids. Among all the processing variants tested, the fermentation duration had the greatest impact on the green coffee bean compositions and the cup quality. A long fermentation duration resulted in a fruitier and more acidic cup. As an ecological alternative for the depulped processing, the demucilaged processing produced a beverage quality comparable to the depulped one. The application of soaking, however, tempered the positive fermentation effects and standardized the green coffee bean quality, regardless of the preceding processing practices applied. Lastly, the impact strength of each processing parameter would also depend on the coffee variety used and the local geographical conditions. All these findings provide a considerable margin of opportunities for future coffee research.

4.
Mycobiology ; 47(1): 66-75, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30988991

RESUMO

A new species of Alternaria causing leaf spots on the rubber tree (Hevea brasiliensis) in Yunnan, China, was isolated, examined, and illustrated. Morphologically, it belongs to the section Porri of Alternaria, which produces relatively large conidia and a simple or branched, filamentous long beak. It is, however, characterized by conidiophores gradually enlarging near the apex into a clavate conidiogenous cell and long ellipsoid to obclavate, smooth-walled conidia with a long filamentous beak. Molecular phylogenetic analyses based on ITS rDNA, GAPDH, and TEF1-alpha sequences demonstrate that the phytopathogen falls in the clade of the section Porri, being most closely related to A. sidae, A. sennae, A. deseriticola, A. cyamopsidis, A. rostellata, A. nitrimali, A. crassa, and A. thunbergiae.

5.
Microbiol Res ; 168(6): 340-350, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23602122

RESUMO

To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, Agrobacterium tumefaciens-mediated transformation (ATMT) was used to identify mutants of C. gloeosporioides impaired in pathogenicity. An ATMT library of 4128 C. gloeosporioides transformants was generated. Transformants were screened for defects in pathogenicity with a detached copper brown leaf assay. 32 mutants showing reproducible pathogenicity defects were obtained. Southern blot analysis showed 60.4% of the transformants had single-site T-DNA integrations. 16 Genomic sequences flanking T-DNA were recovered from mutants by thermal asymmetric interlaced PCR, and were used to isolate the tagged genes from the genome sequence of wild-type C. gloeosporioides by Basic Local Alignment Search Tool searches against the local genome database of the wild-type C. gloeosporioides. One potential pathogenicity genes encoded calcium-translocating P-type ATPase. Six potential pathogenicity genes had no known homologs in filamentous fungi and were likely to be novel fungal virulence factors. Two putative genes encoded Glycosyltransferase family 28 domain-containing protein and Mov34/MPN/PAD-1 family protein, respectively. Five potential pathogenicity genes had putative function matched with putative protein of other Colletotrichum species. Two known C. gloeosporioides pathogenicity genes were also identified, the encoding Glomerella cingulata hard-surface induced protein and C. gloeosporioides regulatory subunit of protein kinase A gene involved in cAMP-dependent PKA signal transduction pathway.


Assuntos
Colletotrichum/genética , Hevea/microbiologia , Doenças das Plantas/microbiologia , Fatores de Virulência/genética , Sequência de Aminoácidos , Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Alinhamento de Sequência , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA