Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Cardiol ; 298: 85-92, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668660

RESUMO

AIMS: To recapitulate progressive human dilated cardiomyopathy (DCM) and heart block in the Lmna R225X mutant mice model and investigate the molecular basis of LMNA mutation induced cardiac conduction disorders (CD); To investigate the potential interventional impact of exercise endurance. METHODS AND RESULTS: A Lmna R225X knock-in mice model in either heterozygous or homozygous genotype was generated. Electrical remodeling was observed with higher occurrence of AV block from neonatal and aged mutant mice as measured by surface electrocardiogram and atrio-ventricular Wenckebach point detection. Histological and molecular profiles revealed an increase in apoptotic cells and activation of caspase-3 activities in heart tissue. Upon aging, extracellular cellular matrix (ECM) remodeling appeared with accumulation of collagen in Lmna R225X mutant hearts as visualized by Masson's trichrome stain. This could be explained by the upregulated ECM gene expression, such as Fibronectin: Fn1, collagen: Col12a1, intergrin: Itgb2 and 3, as detected by microarray gene chip. Also, endurance exercise for 3 month improved the ventricular ejection fraction, attenuated fibrosis and cardiomyocytes apoptosis in the aged mutant mice. CONCLUSIONS: The mechanism of LMNA nonsense mutation induced cardiac conduction defects through AV node fibrosis is due to upregulated ECM gene expression upon activation of cardiac apoptosis. Lmna R225X mutant mice hold the potential for serving as in vivo models to explore the mechanism and therapeutic methods for AV block or myopathy associated with the aging process.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatia Dilatada/genética , Códon sem Sentido/genética , Lamina Tipo A/genética , Condicionamento Físico Animal/fisiologia , Animais , Animais Recém-Nascidos , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/terapia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/terapia , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Frequência Cardíaca/fisiologia , Lamina Tipo A/biossíntese , Camundongos , Condicionamento Físico Animal/métodos
2.
Sci Rep ; 8(1): 14872, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291295

RESUMO

Empagliflozin, a sodium-glucose co-transporter (SGLT) inhibitor, reduces heart failure and sudden cardiac death but the underlying mechanisms remain elusive. In cardiomyocytes, SGLT1 and SGLT2 expression is upregulated in diabetes mellitus, heart failure, and myocardial infarction. We hypothesise that empagliflozin exerts direct effects on cardiomyocytes that attenuate diabetic cardiomyopathy. To test this hypothesis, cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were used to test the potential effects of empagliflozin on neutralization of cardiac dysfunction induced by diabetic-like cultures. Our results indicated that insulin-free high glucose culture significantly increased the size of and NPPB, SGLT1 and SGLT2 expression of hiPSC-derived cardiomyocytes. In addition, high glucose-treated hiPSC-derived cardiomyocytes exhibited reduced contractility regardless of the increased calcium transient capacity. Interestingly, application of empagliflozin before or after high glucose treatment effectively reduced the high glucose-induced cardiac abnormalities. Since application of empagliflozin did not significantly alter viability or glycolytic capacity of the hiPSC-derived cardiomyocytes, it is plausible that empagliflozin exerts its effects via the down-regulation of SGLT1, SGLT2 and GLUT1 expression. These observations provide supportive evidence that may help explain its unexpected benefit observed in the EMPA-REG trial.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucose/metabolismo , Glucosídeos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Miócitos Cardíacos/metabolismo
3.
J Am Heart Assoc ; 6(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754655

RESUMO

BACKGROUND: Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the LMNA gene are of nonsense mutation. PTC124 induces translational read-through over the premature stop codon and restores production of the full-length proteins from the affected genes. In this study we generated human induced pluripotent stem cells-derived cardiomyocytes from patients who harbored different LMNA mutations (nonsense and frameshift) to evaluate the potential therapeutic effects of PTC124 in LMNA-related cardiomyopathy. METHODS AND RESULTS: We generated human induced pluripotent stem cells lines from 3 patients who carried distinctive mutations (R225X, Q354X, and T518fs) in the LMNA gene. The cardiomyocytes derived from these human induced pluripotent stem cells lines reproduced the pathophysiological hallmarks of LMNA-related cardiomyopathy. Interestingly, PTC124 treatment increased the production of full-length LMNA proteins in only the R225X mutant, not in other mutations. Functional evaluation experiments on the R225X mutant further demonstrated that PTC124 treatment not only reduced nuclear blebbing and electrical stress-induced apoptosis but also improved the excitation-contraction coupling of the affected cardiomyocytes. CONCLUSIONS: Using cardiomyocytes derived from human induced pluripotent stem cells carrying different LMNA mutations, we demonstrated that the effect of PTC124 is codon selective. A premature stop codon UGA appeared to be most responsive to PTC124 treatment.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lamina Tipo A/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Oxidiazóis/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Códon sem Sentido , Estimulação Elétrica , Acoplamento Excitação-Contração/efeitos dos fármacos , Mutação da Fase de Leitura , Regulação da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/genética , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA