RESUMO
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
RESUMO
Thin film-based thermal flow sensors afford applications in healthcare and industries owing to their merits in preserving initial flow distributions. However, traditional thermal flow sensors are primarily applied to track flow intensities based on hot-wire or hot-film sensing mechanisms due to their relatively facile device configurations and fabrication strategies. Herein, a calorimetric thermal flow sensor is proposed based on laser direct writing to form laser-induced graphene as heaters and temperature sensors, resulting in monitoring both flow intensities and orientations. Via homogeneously surrounding spiral heaters with multiple temperature sensors, the device exhibits high sensitivity (â¼162 K·s/m) at small flows with an extended flow detection range (â¼25 m/s). Integrating the device with a data-acquisition board and a dual-mode graphical user interface enables wirelessly and dynamically monitoring respiration and the motion of robotic arms. This versatile flow sensor with facile manufacturing affords potentials in health inspection, remote monitoring, and studying hydrodynamics.
RESUMO
Mesangial proliferative glomerulonephritis (MesPGN) is a common renal disease that lacks effective drug intervention. Aconiti Lateralis Radix (Fuzi), a natural Chinese medical herb, is found with significant therapeutic effects on various diseases in the clinic. However, its effects on MesPGN have not been reported. This study is aimed to discuss the therapeutic effects of the aqueous extract of Aconiti Lateralis Radix (ALR) and the polysaccharides of Aconiti Lateralis Radix (PALR) on MesPGN as well as the underlying mechanism. In this study, we, firstly, studied the anti-MesPGN mechanism of ALR and PALR. ALR and PALR inhibit the proliferation of the mesangial cells through the PI3K/AKT/mTOR pathway, induce the G0/G1 phase of block and apoptosis, inhibit the activity of Cyclin E and CDK2, increase the expression of Bax, cleaved caspase-8/caspase-8, and cleaved caspase-3/caspase-3 proteins, and effectively inhibit the growth of the mesangial cells. Overall, our data suggest that ALR and PALR may be potential candidates for MesPGN and that PALR is more effective than ALR.
RESUMO
OBJECTIVE: To determine the effect of Wenyang Huazhuo Fang (WHF), a Traditional Chinese Medicine decoction, on renal function in a rat model of doxorubicin-induced nephropathy, and to elucidate the underlying mechanism. METHODS: Sprague-Dawley rats were randomly divided into six groups: control, doxorubicin-nephropathy, and prednisone-treated (6.45 mg·kg-1·dï¼1) doxorubicin nephropathy groups, as well as high- (7.26 g·kg-1·dï¼1, medium- (2.42 g·kg-1·dï¼1, and low-dose (0.81 g·kg-1·dï¼1 WHF-treated doxorubicin-nephropathy groups. The nephropathy rat model was established by two tail vein injections of doxorubicin, followed by prednisone or WHF treatment for 8 weeks. Body weights were monitored and urinary protein was measured every 2 weeks. After the end of the treatment period, the rats were euthanized. Serum biochemical indicators were determined and renal morphological alterations were assessed using histological staining. The expression of transient receptor potential cation channel subfamily C member 6 (TRPC6), stromal interaction molecule 1 (STIM1), and calcium release-activated calcium channel protein 1 (Orai1) was detected using western blotting, and their mRNA levels were examined using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: WHF treatment was found to significantly ameliorate weight loss, proteinuria, hypoalbuminemia, and dyslipidemia in doxorubicin-nephropathy rats. The protein and mRNA levels of TRPC6, STIM1, and Orai1 were partially, but significantly suppressed by prednisone or WHF treatment. CONCLUSION: Treatment with WHF significantly ameliorates renal injury in a rat model of doxorubicin-induced nephropathy, which could be at least partially related to repression of the TRPC6 pathway.