Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001908

RESUMO

Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient.

2.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201440

RESUMO

Hepatoblastoma is characterized by driver mutations in CTNNB1, making it an attractive biomarker for a liquid biopsy approach utilizing circulating tumor DNA (ctDNA). This prospective observational study sought to ascertain the feasibility of ctDNA detection in patients with hepatoblastoma and explore its associations with established clinical indicators and biomarkers, including serum Alpha-fetoprotein (AFP). We obtained 38 plasma samples and 17 tumor samples from 20 patients with hepatoblastoma. These samples were collected at various stages: 10 at initial diagnosis, 17 during neoadjuvant chemotherapy, 6 post-operatively, and 5 at disease recurrence. Utilizing a bespoke sequencing assay we developed called QUENCH, we identified single nucleotide variants and deletions in CTNNB1 ctDNA. Our study demonstrated the capability to quantitate ctDNA down to a variant allele frequency of 0.3%, achieving a sensitivity of 90% for patients at initial diagnosis, and a specificity of 100% at the patient level. Notably, ctDNA positivity correlated with tumor burden, and ctDNA levels exhibited associations with macroscopic residual disease and treatment response. Our findings provide evidence for the utility of quantitative ctDNA detection in hepatoblastoma management. Given the distinct detection targets, ctDNA and AFP-based stratification and monitoring approaches could synergize to enhance clinical decision-making. Further research is needed to elucidate the interplay between ctDNA and AFP and determine the optimal clinical applications for both methods in risk stratification and residual disease detection.

3.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34282791

RESUMO

BACKGROUND: MYCN amplification (MNA), segmental chromosomal aberrations (SCA) and ALK activating mutations are biomarkers for risk-group stratification and for targeted therapeutics for neuroblastoma, both of which are currently assessed on tissue biopsy. Increase in demand for tumor genetic testing for neuroblastoma diagnosis is posing a challenge to current practice, as the small size of the core needle biopsies obtained are required for multiple molecular tests. We evaluated the utility of detecting these biomarkers in the circulation. METHODS: Various pre-analytical conditions tested to optimize circulating-tumor DNA (ctDNA) copy number changes evaluations. Plasma samples from 10 patients diagnosed with neuroblastoma assessed for SCA and MNA using single nucleotide polymorphism (SNP) array approach currently used for neuroblastoma diagnosis, with MNA status assessed independently using digital-droplet PCR (ddPCR). Three patients (one in common with the previous 10) tested for ALK activating mutations p.F1174L and p.F1245I using ddPCR. RESULTS: Copy number detection is highly affected by physical perturbations of the blood sample (mimicking suboptimal sample shipment), which could be overcome using specialized preservative collection tubes. Pre-analytical DNA repair procedures on ctDNA before SNP chromosome microarray processing improved the lower limit of detection for SCA and MNA, defined as 20% and 10%, respectively. We detected SCA in 10/10 (100%) patients using SNP array, 7 of which also presented MNA. Circulating-free DNA (cfDNA) and matched tumor DNA profiles were generally identical. MNA was detected using ddPCR in 7/7 (100%) of MNA and 0/12 (0%) non-MNA cases. MNA and ALK mutation dynamic change was assessed in longitudinal samples from 4 and 3 patients (one patient with both), respectively, accurately reflected response to treatment in 6/6 (100%) and disease recurrence in 5/6 (83%) of cases. Samples taken prior to targeted treatment with the ALK inhibitor Lorlatinib and 6-8 weeks on treatment showed reduction/increase in ALK variants according to response to treatment. CONCLUSIONS: These results demonstrate the feasibility of ctDNA profiling for molecular risk-stratification, and treatment monitoring in a clinically relevant time frame and the potential to reduce fresh tissue requirements currently embedded in the management of neuroblastoma.

4.
Biopreserv Biobank ; 19(2): 124-129, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33493007

RESUMO

Liquid biopsy is rapidly gaining traction for potentially revolutionizing cancer diagnosis and treatment through blood-based utilization of shed biomolecules. This approach can provide a global picture of the cancer in real time, at multiple time points, and with minimal invasiveness. In this review, we familiarize cancer biobanks with the principles used for liquid biopsy work and highlight unique aspects of applying liquid biopsy approaches to pediatric cancers to enable high-quality and efficient translational research.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias , Criança , Humanos , Biópsia Líquida , Pesquisa Translacional Biomédica
5.
Pediatr Blood Cancer ; 67(11): e28594, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881242

RESUMO

Driver mutations in the CTNNB1 gene (encoding ß-catenin) are a hallmark of sporadic hepatoblastoma (HBL). Our results show that CTNNB1 circulating tumour DNA (ctDNA) is readily detected in patients diagnosed with localised HBL, with serial sampling along the course of therapy and follow up providing a sensitive mechanism to monitor tumour dynamics and response to treatment. This exciting potential for CTNNB1 ctDNA to serve as a biomarker for treatment response in HBL holds clinical value, and requires assessment in a larger cohort of mixed tumour stages and recurrent disease.


Assuntos
Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA de Neoplasias/genética , Hepatoblastoma/diagnóstico , Neoplasias Hepáticas/diagnóstico , Mutação , beta Catenina/genética , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , DNA de Neoplasias/sangue , Seguimentos , Hepatoblastoma/sangue , Hepatoblastoma/genética , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Prognóstico , Estudos Prospectivos , beta Catenina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA