Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 178(3): 1142-1153, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30217826

RESUMO

The porosity of wood cell walls is of interest for both understanding xylem functionality and from a wood materials perspective. The movement of water in xylem generally occurs through the macroporous networks formed in softwood by bordered pits and in hardwood by the intervessel pits and open conduits created by vessels and perforation plates. In some situations, such as cavitated xylem, water can only move through the micropores that occur in lignified tracheid and fiber cell walls; however, these micropore networks are poorly understood. Here, we used molecular microscopy analysis of radiata pine (Pinus radiata) and red beech (Nothofagus fusca) to determine the distribution of micropores in the secondary walls and middle lamellae of tracheids and fibers in relation to cell wall composition. Using two different types of probe, we identified a greater porosity of secondary cell walls and a reduced porosity of the middle lamella. Areas of reduced porosity were observed in the outer regions of the secondary cell wall of both tracheids and fibers that appear unrelated to lignification or the distribution of cellulose, mannan, and xylan. Hardwood fiber cell walls were less lignified than those of softwood tracheids and showed greater accessibility to porosity probes. Vessel cell walls were comparable to those of fibers in terms of both porosity and lignification. Lignification is probably the primary determinant of cell wall porosity in xylem. The highly lignified middle lamella, and lumen surface, act as a barrier to probe movement and, therefore, water movement in both softwood and hardwood.


Assuntos
Pinus/citologia , Água/metabolismo , Madeira/citologia , Parede Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Lignina/metabolismo , Microscopia , Pinus/metabolismo , Porosidade , Madeira/metabolismo , Xilema/citologia , Xilema/metabolismo
2.
Environ Sci Process Impacts ; 16(12): 2734-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312613

RESUMO

The acid plant 'blow-down' (also called weak acid) produced at El Teniente mine in Chile was characterized. This liquid waste (tailing) is generated during the cooling and cleaning of the smelter gas prior to the production of sulfuric acid. The weak acid was composed of a liquid and a solid phase (suspended solids). The liquid phase of the sample analyzed in this study mainly contained Cu (562 mg L(-1)), SO4(2-) (32 800 mg L(-1)), Ca (1449 mg L(-1)), Fe (185 mg L(-1)), As (6 mg L(-1)), K (467 mg L(-1)) and Al (113 mg L(-1)). Additionally, the sample had a pH-value and total acidity of 0.45 and 2970 mg L(-1) as CaCO3, respectively. Hence, this waste was classified as extremely acidic and with a high metal content following the Ficklin diagram classification. Elemental analysis using atomic absorption, inductively coupled plasma, X-ray diffraction and electron microscopy showed that the suspended solids were anglesite (PbSO4) nano- and microparticles ranging from 50 nm to 500 nm in diameter.


Assuntos
Monitoramento Ambiental , Resíduos Industriais/análise , Chumbo/análise , Mineração , Nanopartículas/análise , Poluentes Químicos da Água/análise , Chile , Ácidos Sulfúricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA