Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(14): 6020-6028, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989085

RESUMO

A mini organic redox-flow battery pluggable on the basis of a high-resolution nuclear magnetic resonance probehead has been conceived and built mainly by 3D printing. This device allows the realization of all modern spectroscopy experiments as well as imaging experiments. It has been tested for the real-time monitoring of redox cycling of 9,10-anthraquinone-2,7-disulfonic acid disodium salt (2,7-AQDS) in acidic conditions, which has revealed the preponderant role of dimerization in the processes of oxidation and reduction. Determination of the thermodynamic properties of homo- and heterodimer formation through quantum chemical, multilevel modeling workflows confirms our hypotheses about the molecular processes occurring during charge and discharge.

2.
ACS Appl Mater Interfaces ; 13(13): 15761-15773, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765380

RESUMO

LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive Li3PO4 layer was deposited by the atomic layer deposition method. We demonstrate that this "material model system" can deliver a remarkable surface capacity (∼0.4 mAh cm-2 at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and Li3PO4 films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.

3.
Materials (Basel) ; 12(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813395

RESUMO

Graphene-based materials are widely studied to enable significant improvements in electroanalytical devices requiring new generations of robust, sensitive and low-cost electrodes. In this paper, we present a direct one-step route to synthetize a functional nitrogen-doped graphene film onto a Ni-covered silicon electrode substrate heated at high temperature, by pulsed laser deposition of carbon in the presence of a surrounding nitrogen atmosphere, with no post-deposition transfer of the film. With the ferrocene methanol system, the functionalized electrode exhibits excellent reversibility, close to the theoretical value of 59 mV, and very high sensitivity to hydrogen peroxide oxidation. Our electroanalytical results were correlated with the composition and nanoarchitecture of the N-doped graphene film containing 1.75 at % of nitrogen and identified as a few-layer defected and textured graphene film containing a balanced mixture of graphitic-N and pyrrolic-N chemical functions. The absence of nitrogen dopant in the graphene film considerably degraded some electroanalytical performances. Heat treatment extended beyond the high temperature graphene synthesis did not significantly improve any of the performances. This work contributes to a better understanding of the electrochemical mechanisms of doped graphene-based electrodes obtained by a direct and controlled synthesis process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA