Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Phys ; 82020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33928076

RESUMO

Network approaches provide sensitive biomarkers for neurological conditions, such as Alzheimer's disease (AD). Mouse models can help advance our understanding of underlying pathologies, by dissecting vulnerable circuits. While the mouse brain contains less white matter compared to the human brain, axonal diameters compare relatively well (e.g., ~0.6 µm in the mouse and ~0.65-1.05 µm in the human corpus callosum). This makes the mouse an attractive test bed for novel diffusion models and imaging protocols. Remaining questions on the accuracy and uncertainty of connectomes have prompted us to evaluate diffusion imaging protocols with various spatial and angular resolutions. We have derived structural connectomes by extracting gradient subsets from a high-spatial, high-angular resolution diffusion acquisition (120 directions, 43-µm-size voxels). We have simulated protocols with 12, 15, 20, 30, 45, 60, 80, 100, and 120 angles and at 43, 86, or 172-µm voxel sizes. The rotational stability of these schemes increased with angular resolution. The minimum condition number was achieved for 120 directions, followed by 60 and 45 directions. The percentage of voxels containing one dyad was exceeded by those with two dyads after 45 directions, and for the highest spatial resolution protocols. For the 86- or 172-µm resolutions, these ratios converged toward 55% for one and 39% for two dyads, respectively, with <7% from voxels with three dyads. Tractography errors, estimated through dyad dispersion, decreased most with angular resolution. Spatial resolution effects became noticeable at 172 µm. Smaller tracts, e.g., the fornix, were affected more than larger ones, e.g., the fimbria. We observed an inflection point for 45 directions, and an asymptotic behavior after 60 directions, corresponding to similar projection density maps. Spatially downsampling to 86 µm, while maintaining the angular resolution, achieved a subgraph similarity of 96% relative to the reference. Using 60 directions with 86- or 172-µm voxels resulted in 94% similarity. Node similarity metrics indicated that major white matter tracts were more robust to downsampling relative to cortical regions. Our study provides guidelines for new protocols in mouse models of neurological conditions, so as to achieve similar connectomes, while increasing efficiency.

2.
IEEE Trans Med Imaging ; 38(6): 1446-1456, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30530318

RESUMO

In brain imaging and connectomics, the study of brain networks, estimating the mean of a population of graphs based on a sample is a core problem. Often, this problem is especially difficult because the sample or cohort size is relatively small, sometimes even a single subject, while the number of nodes can be very large with noisy estimates of connectivity. While the element-wise sample mean of the adjacency matrices is a common approach, this method does not exploit the underlying structural properties of the graphs. We propose using a low-rank method that incorporates dimension selection and diagonal augmentation to smooth the estimates and improve performance over the naïve methodology for small sample sizes. Theoretical results for the stochastic block model show that this method offers major improvements when there are many vertices. Similarly, we demonstrate that the low-rank methods outperform the standard sample mean for a variety of independent edge distributions as well as human connectome data derived from the magnetic resonance imaging, especially when the sample sizes are small. Moreover, the low-rank methods yield "eigen-connectomes," which correlate with the lobe-structure of the human brain and superstructures of the mouse brain. These results indicate that the low-rank methods are the important parts of the toolbox for researchers studying populations of graphs in general and statistical connectomics in particular.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA