Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 25(4): 679-689, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35670867

RESUMO

The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.


Assuntos
Anti-Infecciosos , Inseticidas , Pseudomonas chlororaphis , Cianeto de Hidrogênio , Inseticidas/farmacologia , Pseudomonas chlororaphis/genética , Pirrolnitrina , Resorcinóis , Solo
2.
Front Microbiol ; 10: 396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873149

RESUMO

The production of the compound 2-hexyl-5-propyl resorcinol (HPR) by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606 (PcPCL1606) is crucial for fungal antagonism and biocontrol activity that protects plants against the phytopathogenic fungus Rosellinia necatrix. The production of HPR is also involved in avocado root colonization during the biocontrol process. This pleiotrophic response prompted us to study the potential role of HPR production in biofilm formation. The swimming motility of PcPLL1606 is enhanced by the disruption of HPR production. Mutants impaired in HPR production, revealed that adhesion, colony morphology, and typical air-liquid interphase pellicles were all dependent on HPR production. The role of HPR production in biofilm architecture was also analyzed in flow chamber experiments. These experiments revealed that the HPR mutant cells had less tight unions than those producing HPR, suggesting an involvement of HPR in the production of the biofilm matrix.

3.
Mol Plant Pathol ; 20(4): 562-574, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537338

RESUMO

Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied. In previous work, we have established that the epiphytic yeast Pseudozyma aphidis inhibits Botrytis cinerea through induced resistance and antibiosis. Here, we demonstrate that P. aphidis adheres to B. cinerea hyphae and competes with them for nutrients. We further show that the secreted antifungal compounds activate the production of reactive oxygen species and programmed cell death in B. cinerea mycelium. Finally, P. aphidis and its secreted compounds negatively affect B. cinerea hyphae, leading to morphological alterations, including hyphal curliness, vacuolization and branching, which presumably affects the colonization ability and infectivity of B. cinerea. This study demonstrates additional modes of action for P. aphidis and its antifungal compounds against the plant pathogen B. cinerea.


Assuntos
Botrytis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ustilaginales/patogenicidade , Apoptose/fisiologia , Micélio/metabolismo
4.
Fungal Biol ; 120(1): 61-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26693685

RESUMO

Peptide BP15 has shown antifungal activity against several plant pathogenic fungi, including Stemphylium vesicarium, the causal agent of brown spot of pear. BP15 inhibits the germination, growth and sporulation of S. vesicarium and displays post-infection activity by stopping fungal infection in pear leaves. In this work, live-cell imaging was undertaken to understand the antifungal mechanism of BP15. A double-staining method based on the combination of calcofluor white and SYTOX green coupled with epifluorescence microscopy was used to investigate fungal cell permeabilization and alterations in fungal growth induced by BP15. GFP-transformants of S. vesicarium were obtained and exposed to rhodamine-labelled BP15. Confocal laser microscopy provided evidence of peptide internalization by hyphae, resulting in fungal cell disorganization and death. S. vesicarium membrane permeabilization by BP15 was found to be peptide-concentration dependent. BP15 at MIC and sub-MIC concentrations (10 and 5 µM, respectively) inhibited S. vesicarium growth and produced morphological alterations to germ tubes, with slow and discontinuous compromise of fungal cell membranes. Fungal cell membrane disruption was immediately induced by BP15 at 100 µM, and this was accompanied by rapid peptide internalization by S. vesicarium hyphae. Peptide BP15 interacted with germ tubes and hyphae of S. vesicarium but not with conidial cells.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Peptídeos/farmacologia , Doenças das Plantas/microbiologia , Pyrus/microbiologia , Ascomicetos/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana
5.
Front Plant Sci ; 6: 132, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814995

RESUMO

Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

6.
Mol Plant Microbe Interact ; 28(3): 249-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25679537

RESUMO

Pseudomonas chlororaphis PCL1606 is a rhizobacterium that has biocontrol activity against many soilborne phytopathogenic fungi. The whole genome sequence of this strain was obtained using the Illumina Hiseq 2000 sequencing platform and was assembled using SOAP denovo software. The resulting 6.66-Mb complete sequence of the PCL1606 genome was further analyzed. A comparative genomic analysis using 10 plant-associated strains within the fluorescent Pseudomonas group, including the complete genome of P. chlororaphis PCL1606, revealed a diverse spectrum of traits involved in multitrophic interactions with plants and microbes as well as biological control. Phylogenetic analysis of these strains using eight housekeeping genes clearly placed strain PCL1606 into the P. chlororaphis group. The genome sequence of P. chlororaphis PCL1606 revealed the presence of sequences that were homologous to biosynthetic genes for the antifungal compounds 2-hexyl, 5-propyl resorcinol (HPR), hydrogen cyanide, and pyrrolnitrin; this is the first report of pyrrolnitrin encoding genes in this P. chlororaphis strain. Single-, double-, and triple-insertional mutants in the biosynthetic genes of each antifungal compound were used to test their roles in the production of these antifungal compounds and in antagonism and biocontrol of two fungal pathogens. The results confirmed the function of HPR in the antagonistic phenotype and in the biocontrol activity of P. chlororaphis PCL1606.


Assuntos
Antifúngicos/farmacologia , Genoma Bacteriano/genética , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Resorcinóis/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Sequência de Bases , Agentes de Controle Biológico , Hibridização Genômica Comparativa , Fusarium/fisiologia , Genômica , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Mutagênese Insercional , Persea/microbiologia , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/química , Pseudomonas/metabolismo , Pirrolnitrina/isolamento & purificação , Pirrolnitrina/metabolismo , Pirrolnitrina/farmacologia , Resorcinóis/isolamento & purificação , Resorcinóis/metabolismo , Análise de Sequência de DNA , Xylariales/fisiologia
7.
Microbiology (Reading) ; 160(Pt 12): 2670-2680, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234473

RESUMO

Pseudomonas chlororaphis PCL1606 synthesizes the antifungal antibiotic 2-hexyl, 5-propyl resorcinol (HPR), which is crucial for the biocontrol of fungal soil-borne pathogens. The genetic basis for HPR production lies in the dar genes, which are directly involved in the biosynthesis of HPR. In the present study, we elucidated the genetic features of the dar genes. Reverse transcription PCR experiments revealed an independent organization of the dar genes, except for darBC, which was transcribed as a polycistronic mRNA. In silico analysis of each gene revealed putative promoters and terminator sequences, validating the proposed gene arrangement. Moreover, experiments utilizing 5' rapid amplification of cDNA ends were used to determine the transcriptional initiation sites for the darA, darBC, darS and darR gene promoters, and subsequently to confirm the functionality of these regions. The results of quantitative real-time PCR experiments indicated that biosynthetic dar genes were not only modulated through the global regulator gacS, but also through darS and darR. The interplay between darS and darR revealed transcriptional cross-inhibition. However, these results also showed that other regulatory parameters play a role in HPR production, such as the environmental conditions and additional regulatory genes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Pseudomonas/metabolismo , Transcrição Gênica , Vias Biossintéticas/genética , Regiões Promotoras Genéticas , Pseudomonas/genética , Reação em Cadeia da Polimerase em Tempo Real , Resorcinóis/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sítio de Iniciação de Transcrição , Transcriptoma
8.
FEMS Microbiol Ecol ; 89(1): 20-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24641321

RESUMO

Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions.


Assuntos
Persea/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/metabolismo , Xylariales/fisiologia , Antibiose , Antifúngicos/metabolismo , Agentes de Controle Biológico , Hifas/fisiologia , Resorcinóis/metabolismo , Rizosfera , Microbiologia do Solo
9.
Mol Plant Microbe Interact ; 26(5): 554-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23547906

RESUMO

To determine the genetic basis by which 2-hexyl, 5-propyl resorcinol (HPR) is produced by the biocontrol rhizobacterium Pseudomonas chlororaphis (formerly known as P. fluorescens) PCL1606, the presence and role of dar genes were investigated. To accomplish this aim, the pCGNOV-1 plasmid was isolated from a PCL1606 genomic library and was shown to hybridize to various dar probes by Southern blot. An analysis of the pCGNOV-1 genomic DNA revealed the presence of five open reading frames that were homologous to dar genes and had an organization that resembled the arrangement of previously described P. chlororaphis strains. Phylogenetic studies resulted in the clustering of PCL1606 with the P. chlororaphis subgroup, which supported the renaming of this strain from P. fluorescens to P. chlororaphis PCL1606. The construction of insertional mutants for each homologous dar gene in P. chlororaphis PCL1606 along with their corresponding complemented derivative strains restored HPR production and confirmed the key role of the dar A and darB genes in HPR production and in the antagonistic phenotype. Finally, biocontrol assays were performed on avocado-Rosellinia and tomato-Fusarium test systems using the HPR-defective and -complemented derivative strains generated here and demonstrated the crucial role of the biosynthetic dar genes in the biocontrol phenotype of P. chlororaphis PCL1606. This biocontrol phenotype is dependent on the dar genes via their production of the HPR antibiotic. Some of the dar genes not directly involved in the biosynthesis of HPR, such as darS or darR, might contribute to regulatory features of HPR production.


Assuntos
Antifúngicos/metabolismo , Pseudomonas/metabolismo , Resorcinóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Southern Blotting , Fases de Leitura Aberta/genética , Pseudomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA