Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultramicroscopy ; 225: 113285, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33932733

RESUMO

LiMn2O4 has been considered one of the most promising cathode materials for Li-ion batteries due to its thermal stability, abundance, environmental affinity, and the possibility to exchange Li-ions in three-dimensions. However, it still suffers from major problems, such as capacity fading and voltage decay, which has been associated to phase transformations and dissolution of transition metals. In this report, we use scanning transmission electron microscopy, coupled with differential phase contrast (DPC), to better understand the mechanisms behind the structural transformations occurring in LiMn2O4. We use the fact that DPC has the ability to observe simultaneously light and heavy elements, as well as measure projected electric fields and charge distribution at the atomic level. This approach allows us to monitor the migration of very low amounts of Mn to the Li atomic positions, at the surface and subsurface regions, which otherwise is very challenging to observe using other techniques such as HAADF and ABF. These observations not only provide a fundamental understanding of the structure of LiMn2O4 but also reveal DPC as a novel technique to determine local structural changes in materials consisting of heavy and light elements, as well as identify the location of light elements, monitor low concentrations of substitutional species and identify phase transformations.

2.
Nanoscale ; 9(16): 5254-5262, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28397926

RESUMO

In this work, oxidation of carbon supported Zn nanostructures was studied to elucidate their utilization as oxygen scavenging materials activated by the relative humidity in the environment. Moisture-activated nano-scavengers were produced on carbon substrates using magnetron sputtering attaining nano-islands (nanoparticles), randomly distributed on the carbon surface, with arbitrary crystallographic orientations. They possess a Zn-ZnO core-shell structure, caused by surface passivation, which provides them with a self-assembled protective layer that prevents complete oxidation of nanoparticles prior to utilization. The oxidation rate is independent of the nanoparticle size and orientation, for particles between 5 and 18 nm. The oxidation kinetics are not in complete agreement with the Cabrera and Mott theory. When exposed to a high relative humidity environment, an acceleration in the oxidation process is observed, dissolving the Zn nanoparticles and forming a layer on the carbon, which facilitates the consumption of the Zn to form ZnO. These results support the idea of its potential use in applications where high RH environments are required, such as food packaging.

3.
Mater Sci Eng C Mater Biol Appl ; 55: 547-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26117788

RESUMO

Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis , Cianetos/química , Prata/química , Zircônio/química , Anti-Infecciosos/química , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica
4.
J Mech Behav Biomed Mater ; 41: 83-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460405

RESUMO

This study aims to evaluate the structural, mechanical and tribological properties of zirconium carbonitrides (ZrCxN1-x) coatings with embedded silver nanoparticles, produced with the intention of achieving a material with enhanced multi-functional properties, including mechanical strength, corrosion resistance, tribological performance and antibacterial behavior suitable for their use in joint prostheses. The coatings were deposited by direct current (DC) reactive magnetron sputtering onto 316 L stainless steel, changing the silver content from 0 to 20 at% by modifying the current density applied to the targets. Different nitrogen and acetylene gas fluxes were used as reactive gases. The coatings revealed different mixtures of crystalline ZrCxN1-x, silver nanoparticles and amorphous carbon phases. The hardness of the films was found to be mainly controlled by the ratio between the hard (ZrCxN1-x) and soft (Ag and amorphous carbon) phases in the films, fluctuating between 7.4 and 20.4 GPa. The coefficient of friction, measured against ultra-high molecular weight polyethylene (UHMWPE) in Hank's balanced salt solution with 10 gL(-1) albumin, is governed by the surface roughness and hardness. The UHMWPE wear rates were in the same order of magnitude (between 1.4 and 2.0 × 10(-6)mm(3)N(-1)m(-1)), justified by the effect of the protective layer of albumin formed during the tests. The small differences were due to the hydrophobic/hydrophilic character of the surface, as well as to the silver content.


Assuntos
Materiais Revestidos Biocompatíveis/química , Prótese Articular , Fenômenos Mecânicos , Nanopartículas Metálicas/química , Polietilenos/química , Prata/química , Zircônio/química , Fricção , Dureza , Propriedades de Superfície
5.
Mater Sci Eng C Mater Biol Appl ; 42: 782-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063180

RESUMO

With the increase of elderly population and health problems that are arising nowadays, hip joint prostheses are being widely used. However, it is estimated that 20% of hip replacement surgeries simply fails after few years, mainly due to wear fatigue. Bearing this in mind, this work reports on the development of new coatings that are able to sustain long and innocuous life inside the patient, which will confer to the usual biomaterials improved physical, mechanical and tribological properties. In particular, the development of multifunctional coatings based on Ag-ZrCN, prepared by DC reactive magnetron sputtering using two targets, Zr and a modified Zr target, in an Ar+C2H2+N2 atmosphere. Silver pellets were placed in the erosion area of the alloyed Zr target in order to obtain a silver content up to 8 at.%. The structural results obtained by x-ray diffraction show that the coatings crystallize in a NaCl crystal structure typical of ZrC1-xNx. The increase of Ag content promoted the formation of an additional a-CNx amorphous phase, besides a silver crystalline phase. Hardness is decreasing, as increasing silver content. Despite the low thicknesses, adhesion values (LC3) can be considered as good. Dynamic fatigue results suggest that these coatings system can be a real asset in terms of mechanical properties, by improving the performance of usual Stainless Steel 316 L biomaterials.


Assuntos
Materiais Revestidos Biocompatíveis/química , Prótese de Quadril , Nanocompostos/química , Prata/química , Zircônio/química , Teste de Materiais , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA