RESUMO
Oncogenes only transform cells under certain cellular contexts, a phenomenon called oncogenic competence. Using a combination of a human pluripotent stem cellderived cancer model along with zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E along with additional mutations depends on the intrinsic transcriptional program present in the cell of origin. In both systems, melanocytes are less responsive to mutations, whereas both neural crest and melanoblast populations are readily transformed. Profiling reveals that progenitors have higher expression of chromatin-modifying enzymes such as ATAD2, a melanoma competence factor that forms a complex with SOX10 and allows for expression of downstream oncogenic and neural crest programs. These data suggest that oncogenic competence is mediated by regulation of developmental chromatin factors, which then allow for proper response to those oncogenes.
Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Cromatina/metabolismo , Melanoma/genética , Melanoma/patologia , Crista Neural/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos , Neoplasias Experimentais , Células-Tronco Neoplásicas/patologia , Crista Neural/metabolismo , Células-Tronco Pluripotentes/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcrição Gênica , Peixe-ZebraRESUMO
Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/ßcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.
Assuntos
Transtorno Autístico , Transtornos do Neurodesenvolvimento , Células-Tronco Pluripotentes , Transtorno Autístico/genética , Diferenciação Celular/genética , Humanos , NeurogêneseRESUMO
Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take â¼4â months to develop, we found that TEAZ leads to tumor onset in â¼7â weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.
Assuntos
Envelhecimento/genética , Eletroporação , Transgenes , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Carcinogênese/genética , Carcinogênese/patologia , Modelos Animais de Doenças , Progressão da Doença , Embrião não Mamífero/metabolismo , Técnicas de Transferência de Genes , Melanoma/patologia , Plasmídeos/genética , Regiões Promotoras Genéticas , Peixe-Zebra/embriologiaRESUMO
Patterning of vertebrate melanophores is essential for mate selection and protection from UV-induced damage. Patterning can be influenced by circulating long-range factors, such as hormones, but it is unclear how their activity is controlled in recipient cells to prevent excesses in cell number and migration. The zebrafish wanderlust mutant harbors a mutation in the sheddase bace2 and exhibits hyperdendritic and hyperproliferative melanophores that localize to aberrant sites. We performed a chemical screen to identify suppressors of the wanderlust phenotype and found that inhibition of insulin/PI3Kγ/mTOR signaling rescues the defect. In normal physiology, Bace2 cleaves the insulin receptor, whereas its loss results in hyperactive insulin/PI3K/mTOR signaling. Insulin B, an isoform enriched in the head, drives the melanophore defect. These results suggest that insulin signaling is negatively regulated by melanophore-specific expression of a sheddase, highlighting how long-distance factors can be regulated in a cell-type-specific manner.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Padronização Corporal , Insulina/metabolismo , Melanóforos/fisiologia , Pigmentação , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Movimento Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Insulina/genética , Melanóforos/citologia , Mutação , Fenótipo , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genéticaRESUMO
The creation of restriction enzymes with programmable DNA-binding and -cleavage specificities has long been a goal of modern biology. The recently discovered Type IIL MmeI family of restriction-and-modification (RM) enzymes that possess a shared target recognition domain provides a framework for engineering such new specificities. However, a lack of structural information on Type IIL enzymes has limited the repertoire that can be rationally engineered. We report here a crystal structure of MmeI in complex with its DNA substrate and an S-adenosylmethionine analog (Sinefungin). The structure uncovers for the first time the interactions that underlie MmeI-DNA recognition and methylation (5'-TCCRAC-3'; R = purine) and provides a molecular basis for changing specificity at four of the six base pairs of the recognition sequence (5'-TCCRAC-3'). Surprisingly, the enzyme is resilient to specificity changes at the first position of the recognition sequence (5'-TCCRAC-3'). Collectively, the structure provides a basis for engineering further derivatives of MmeI and delineates which base pairs of the recognition sequence are more amenable to alterations than others.
Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Sequência de Bases , Metilação de DNA , Hidrólise , Dados de Sequência MolecularRESUMO
Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.
Assuntos
Técnicas de Cultura de Células , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Separação Celular/métodos , Citometria de Fluxo/métodos , HumanosRESUMO
Type IIL restriction enzymes have rejuvenated the search for user-specified DNA binding and cutting. By aligning and contrasting the highly comparable amino-acid sequences yet diverse recognition specificities across the family of enzymes, amino acids involved in DNA binding have been identified and mutated to produce alternative binding specificities. To date, the specificity of MmeI (a type IIL restriction enzyme) has successfully been altered at positions 3, 4 and 6 of the asymmetric TCCRAC (where R is a purine) DNA-recognition sequence. To further understand the structural basis of MmeI DNA-binding specificity, the enzyme has been crystallized in complex with its DNA substrate. The crystal belonged to space group P1, with unit-cell parameters a = 61.73, b = 94.96, c = 161.24 Å, α = 72.79, ß = 89.12, γ = 71.68°, and diffracted to 2.6 Å resolution when exposed to synchrotron radiation. The structure promises to reveal the basis of MmeI DNA-binding specificity and will complement efforts to create enzymes with novel specificities.