Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Adv ; 138: 212872, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913252

RESUMO

The extensive innate immune response to implanted biomaterials contributes significantly to their sub-par performance and failure. Granuloma formation is one of such reactions which results in multi-cell type clusters in line with the immune reaction to implanted materials. However, currently no in vitro model of granuloma formation exists that takes into account the arrival of multiple cell types (immune cells and connective tissue cells) to the implant insertion site. In this study, we developed a two-step model based on stimulated macrophage seeding followed by fibroblast introduction after a physiologically relevant time period for mimicking initial steps of immune reaction to biomaterials and inducing granuloma like behavior. Both LPS and TNF-α induction resulted in granuloma like formations which persisted longer than the control conditions. Introduction of human fibroblasts resulted in the colonization of the surfaces where the cell numbers and the collagen secretion were dependent on the microenvironment. In order to demonstrate the capacity of our model system to monitor the reaction to a given coating, a validated antimicrobial coating (Polyarginine (PAR)/Hyaluronic acid (HA)) was used as a testing bed. The coating prevented the adhesion of macrophages while allowing the adhesion of the fibroblast at the time of their arrival. Similar to its antimicrobial activity, macrophage metabolic activity and M2 differentiation in the presence of PAR was dependent to its chain length. The incorporation of fibroblasts resulted in decreased TNF-α and increased IL-1RA secretion especially in stimulation conditions. The pro- and anti-inflammatory cytokine secretions were low for PAR/HA coatings in line with the decreased number of macrophage presence. In the presence of complex PBMC population, the coating resulted in slightly less cellular attachment, without any significant cytokine secretion; the absence of inflammatory reaction was also demonstrated in vivo in a mouse model. The described in vitro granuloma testing system can control the macrophage reaction as a function of stimulation. It can also be used for testing new biomaterials for the potential innate immune responses and also for validation of implant coatings beyond their primary function from the immune response point of view.


Assuntos
Anti-Infecciosos , Fator de Necrose Tumoral alfa , Animais , Materiais Biocompatíveis , Granuloma , Humanos , Ácido Hialurônico , Imunidade Inata , Leucócitos Mononucleares , Camundongos
2.
Sci Rep ; 11(1): 18702, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548560

RESUMO

Layer-by-layer (LbL) deposition method of polyelectrolytes is a versatile way of developing functional nanoscale coatings. Even though the mechanisms of LbL film development are well-established, currently there are no predictive models that can link film components with their final properties. The current health crisis has shown the importance of accelerated development of biomedical solutions such as antiviral coatings, and the implementation of machine learning methodologies for coating development can enable achieving this. In this work, using literature data and newly generated experimental results, we first analyzed the relative impact of 23 coating parameters on the coating thickness. Next, a predictive model has been developed using aforementioned parameters and molecular descriptors of polymers from the DeepChem library. Model performance was limited because of insufficient number of data points in the training set, due to the scarce availability of data in the literature. Despite this limitation, we demonstrate, for the first time, utilization of machine learning for prediction of LbL coating properties. It can decrease the time necessary to obtain functional coating with desired properties, as well as decrease experimental costs and enable the fast first response to crisis situations (such as pandemics) where coatings can positively contribute. Besides coating thickness, which was selected as an output value in this study, machine learning approach can be potentially used to predict functional properties of multilayer coatings, e.g. biocompatibility, cell adhesive, antibacterial, antiviral or anti-inflammatory properties.

3.
ACS Appl Mater Interfaces ; 12(17): 19258-19267, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32292035

RESUMO

Implantation of biomedical devices is often followed by bacterial infections that may seriously affect implant functionalities and lead to their failure. In the context of bacterial resistance to antibiotics, which is a growing problem worldwide, new strategies that are able to overcome these problems are needed. In this work, we introduce a new formulation of hyaluronic acid (HA)-based antimicrobial material: HA hydrogels loaded with polyarginine (PAR), a polycationic antibiotic substitute. The loading is possible through electrostatic interactions between negatively charged HA and positively charged PAR. Such hydrogels absorb high quantities of PAR, which are then gradually released from the hydrogel. This original system provides a long-lasting antibacterial effect on an in vitro model of repetitive infection, thus demonstrating a strong potential to fight multiple rounds of infections that are resistant to antibiotic treatment. In addition, HA-PAR hydrogels could be deposited onto/into medical devices such as wound dressings and mesh prostheses used in clinical applications. Finally, we performed first in vivo tests of hydrogel-coated mesh materials to verify their biocompatibility in a rat model, which show no difference between control HA hydrogel and PAR-loaded hydrogel in terms of inflammation.


Assuntos
Antibacterianos/farmacologia , Portadores de Fármacos/química , Ácido Hialurônico/química , Hidrogéis/química , Peptídeos/farmacologia , Animais , Células 3T3 BALB , Bandagens , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Hialurônico/toxicidade , Hidrogéis/toxicidade , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos
4.
Sci Rep ; 6: 35230, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739457

RESUMO

The development of multimodal strategies for the treatment of hepatocellular carcinoma requires tractable animal models allowing for advanced in vivo imaging. Here, we characterize an orthotopic hepatocellular carcinoma model based on the injection of luciferase-expressing human hepatoma Huh-7 (Huh-7-Luc) cells in immunodeficient mice. Luciferase allows for an easy repeated monitoring of tumor growth by in vivo bioluminescence. The intrahepatic injection was more efficient than intrasplenic or intraportal injection in terms of survival, rate of orthotopic engraftment, and easiness. A positive correlation between luciferase activity and tumor size, evaluated by Magnetic Resonance Imaging, allowed to define the endpoint value for animal experimentation with this model. Response to standard of care, sorafenib or doxorubicin, were similar to those previously reported in the literature, with however a strong toxicity of doxorubicin. Tumor vascularization was visible by histology seven days after Huh-7-Luc transplantation and robustly developed at day 14 and day 21. The model was used to explore different imaging modalities, including microtomography, probe-based confocal laser endomicroscopy, full-field optical coherence tomography, and ultrasound imaging. Tumor engraftment was similar after echo-guided intrahepatic injection as after laparotomy. Collectively, this orthotopic hepatocellular carcinoma model enables the in vivo evaluation of chemotherapeutic and surgical approaches using multimodal imaging.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Luciferases/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Imagem Multimodal/métodos , Transplante de Neoplasias/patologia , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA