Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 33(3): 033117, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003807

RESUMO

We propose Local Dirac Synchronization that uses the Dirac operator to capture the dynamics of coupled nodes and link signals on an arbitrary network. In Local Dirac Synchronization, the harmonic modes of the dynamics oscillate freely while the other modes are interacting non-linearly, leading to a collectively synchronized state when the coupling constant of the model is increased. Local Dirac Synchronization is characterized by discontinuous transitions and the emergence of a rhythmic coherent phase. In this rhythmic phase, one of the two complex order parameters oscillates in the complex plane at a slow frequency (called emergent frequency) in the frame in which the intrinsic frequencies have zero average. Our theoretical results obtained within the annealed approximation are validated by extensive numerical results on fully connected networks and sparse Poisson and scale-free networks. Local Dirac Synchronization on both random and real networks, such as the connectome of Caenorhabditis Elegans, reveals the interplay between topology (Betti numbers and harmonic modes) and non-linear dynamics. This unveils how topology might play a role in the onset of brain rhythms.

2.
Phys Rev E ; 106(6-1): 064314, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671168

RESUMO

The study of reaction-diffusion systems on networks is of paramount relevance for the understanding of nonlinear processes in systems where the topology is intrinsically discrete, such as the brain. Until now, reaction-diffusion systems have been studied only when species are defined on the nodes of a network. However, in a number of real systems including, e.g., the brain and the climate, dynamical variables are not only defined on nodes but also on links, faces, and higher-dimensional cells of simplicial or cell complexes, leading to topological signals. In this work, we study reaction-diffusion processes of topological signals coupled through the Dirac operator. The Dirac operator allows topological signals of different dimension to interact or cross-diffuse as it projects the topological signals defined on simplices or cells of a given dimension to simplices or cells of one dimension up or one dimension down. By focusing on the framework involving nodes and links, we establish the conditions for the emergence of Turing patterns and we show that the latter are never localized only on nodes or only on links of the network. Moreover, when the topological signals display a Turing pattern their projection does as well. We validate the theory hereby developed on a benchmark network model and on square lattices with periodic boundary conditions.


Assuntos
Difusão , Dinâmica não Linear
3.
Sci Rep ; 10(1): 10503, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601403

RESUMO

The Price model, the directed version of the Barabási-Albert model, produces a growing directed acyclic graph. We look at variants of the model in which directed edges are added to the new vertex in one of two ways: using cumulative advantage (preferential attachment) choosing vertices in proportion to their degree, or with random attachment in which vertices are chosen uniformly at random. In such networks, the longest path is well defined and in some cases is known to be a better approximation to geodesics than the shortest path. We define a reverse greedy path and show both analytically and numerically that this scales with the logarithm of the size of the network with a coefficient given by the number of edges added using random attachment. This is a lower bound on the length of the longest path to any given vertex and we show numerically that the longest path also scales with the logarithm of the size of the network but with a larger coefficient that has some weak dependence on the parameters of the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA