Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(39): 19867-19877, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817920

RESUMO

Controlling ultrafast material transformations with atomic precision is essential for future nanotechnology. Pulsed laser annealing (LA), inducing extremely rapid and localized phase transitions, is a powerful way to achieve this but requires careful optimization together with the appropriate system design. We present a multiscale LA computational framework that can simulate atom-by-atom the highly out-of-equilibrium kinetics of a material as it interacts with the laser, including effects of structural disorder. By seamlessly coupling a macroscale continuum solver to a nanoscale superlattice kinetic Monte Carlo code, this method overcomes the limits of state-of-the-art continuum-based tools. We exploit it to investigate nontrivial changes in composition, morphology, and quality of laser-annealed SiGe alloys. Validations against experiments and phase-field simulations as well as advanced applications to strained, defected, nanostructured, and confined SiGe are presented, highlighting the importance of a multiscale atomistic-continuum approach. Current applicability and potential generalization routes are finally discussed.

2.
J Am Chem Soc ; 144(18): 8278-8285, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35476458

RESUMO

Recent progress in the on-surface synthesis and characterization of nanomaterials is facilitating the realization of new carbon allotropes, such as nanoporous graphenes, graphynes, and 2D π-conjugated polymers. One of the latest examples is the biphenylene network (BPN), which was recently fabricated on gold and characterized with atomic precision. This gapless 2D organic material presents uncommon metallic conduction, which could help develop innovative carbon-based electronics. Here, using first principles calculations and quantum transport simulations, we provide new insights into some fundamental properties of BPN, which are key for its further technological exploitation. We predict that BPN hosts an unprecedented spin-polarized multiradical ground state, which has important implications for the chemical reactivity of the 2D material under practical use conditions. The associated electronic band gap is highly sensitive to perturbations, as seen in finite temperature (300 K) molecular dynamics simulations, but the multiradical character remains stable. Furthermore, BPN is found to host in-plane anisotropic (spin-polarized) electrical transport, rooted in its intrinsic structural features, which suggests potential device functionality of interest for both nanoelectronics and spintronics.

3.
J Phys Chem Lett ; 12(45): 11220-11227, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34761926

RESUMO

The discovery of graphene has catalyzed the search for other 2D carbon allotropes, such as graphynes, graphdiynes, and 2D π-conjugated polymers, which have been theoretically predicted or experimentally synthesized during the past decade. These materials exhibit a conductive nature bound to their π-conjugated sp2 electronic system. Some cases include sp-hybridized moieties in their nanostructure, such as acetylenes in graphynes; however, these act merely as electronic couplers between the conducting π-orbitals of sp2 centers. Herein, via first-principles calculations and quantum transport simulations, we demonstrate the existence of an acetylene-meditated transport mechanism entirely hosted by sp-hybridized orbitals. For that we propose a series of nanostructured 2D materials featuring linear arrangements of closely packed acetylene units which function as sp-nanowires. Because of the very distinct nature of this unique transport mechanism, it appears to be highly complementary with π-conjugation, thus potentially becoming a key tool for future carbon nanoelectronics.

4.
Sci Rep ; 11(1): 18482, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531506

RESUMO

Lateral heterostructures (LH) of monolayer-multilayer regions of the same noble transition metal dichalcogenide, such as platinum diselenide (PtSe2), are promising options for the fabrication of efficient two-dimensional field-effect transistors (FETs), by exploiting the dependence of the energy gap on the number of layers and the intrinsically high quality of the heterojunctions. Key for future progress in this direction is understanding the effects of the physics of the lateral interfaces on far-from-equilibrium transport properties. In this work, a multi-scale approach to device simulation, capable to include ab-initio modelling of the interfaces in a computationally efficient way, is presented. As an application, p- and n-type monolayer-multilayer PtSe2 LH-FETs are investigated, considering design parameters such as channel length, number of layers and junction quality. The simulations suggest that such transistors can provide high performance in terms of subthreshold characteristics and switching behavior, and that a single channel device is not capable, even in the ballistic defectless limit, to satisfy the requirements of the semiconductor roadmap for the next decade, and that stacked channel devices would be required. It is shown how ab-initio modelling of interfaces provides a reliable physical description of charge displacements in their proximity, which can be crucial to correctly predict device transport properties, especially in presence of strong dipoles, mixed stoichiometries or imperfections.

5.
J Am Chem Soc ; 141(33): 13081-13088, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31342738

RESUMO

Bottom-up prepared carbon nanostructures appear as promising platforms for future carbon-based nanoelectronics due to their atomically precise and versatile structure. An important breakthrough is the recent preparation of nanoporous graphene (NPG) as an ordered covalent array of graphene nanoribbons (GNRs). Within NPG, the GNRs may be thought of as 1D electronic nanochannels through which electrons preferentially move, highlighting NPG's potential for carbon nanocircuitry. However, the π-conjugated bonds bridging the GNRs give rise to electronic crosstalk between the individual 1D channels, leading to spatially dispersing electronic currents. Here, we propose a chemical design of the bridges resulting in destructive quantum interference, which blocks the crosstalk between GNRs in NPG, electronically isolating them. Our multiscale calculations reveal that injected currents can remain confined within a single, 0.7 nm wide, GNR channel for distances as long as 100 nm. The concepts developed in this work thus provide an important ingredient for the quantum design of future carbon nanocircuitry.

6.
Nanoscale ; 11(13): 6153-6164, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30874281

RESUMO

Multi-scale computational approaches are important for studies of novel, low-dimensional electronic devices since they are able to capture the different length-scales involved in the device operation, and at the same time describe critical parts such as surfaces, defects, interfaces, gates, and applied bias, on a atomistic, quantum-chemical level. Here we present a multi-scale method which enables calculations of electronic currents in two-dimensional devices larger than 100 nm2, where multiple perturbed regions described by density functional theory (DFT) are embedded into an extended unperturbed region described by a DFT-parametrized tight-binding model. We explain the details of the method, provide examples, and point out the main challenges regarding its practical implementation. Finally we apply it to study current propagation in pristine, defected and nanoporous graphene devices, injected by chemically accurate contacts simulating scanning tunneling microscopy probes.

7.
Nano Lett ; 19(1): 576-581, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30539639

RESUMO

Electrons in graphene can show diffraction and interference phenomena fully analogous to light thanks to their Dirac-like energy dispersion. However, it is not clear how this optical analogy persists in nanostructured graphene, for example, with pores. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly (Moreno et al. Science 2018, 360, 199). We predict that electrons propagating in NPG exhibit the interference Talbot effect, analogous to photons in coupled waveguides. Our results are obtained by parameter-free atomistic calculations of real-sized NPG samples based on seamlessly integrated density functional theory and tight-binding regions. We link the origins of this interference phenomenon to the band structure of the NPG. Most importantly, we demonstrate how the Talbot effect may be detected experimentally using dual-probe scanning tunneling microscopy. Talbot interference of electron waves in NPG or other related materials may open up new opportunities for future quantum electronics, computing, or sensing.

8.
J Phys Condens Matter ; 30(36): 364001, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30061475

RESUMO

Graphene has proven to host outstanding mesoscopic effects involving massless Dirac quasiparticles travelling ballistically resulting in the current flow exhibiting light-like behaviour. A new branch of 2D electronics inspired by the standard principles of optics is rapidly evolving, calling for a deeper understanding of transport in large-scale devices at a quantum level. Here we perform large-scale quantum transport calculations based on a tight-binding model of graphene and the non-equilibrium Green's function method and include the effects of p-n junctions of different shape, magnetic field, and absorptive regions acting as drains for current. We stress the importance of choosing absorbing boundary conditions in the calculations to correctly capture how current flows in the limit of infinite devices. As a specific application we present a fully quantum-mechanical framework for the '2D Dirac fermion microscope' recently proposed by Bøggild et al (2017 Nat. Commun. 8 10.1038), tackling several key electron-optical effects therein predicted via semiclassical trajectory simulations, such as electron beam collimation, deflection and scattering off Veselago dots. Our results confirm that a semiclassical approach to a large extend is sufficient to capture the main transport features in the mesoscopic limit and the optical regime, but also that a richer electron-optical landscape is to be expected when coherence or other purely quantum effects are accounted for in the simulations.

9.
Nano Lett ; 18(8): 4675-4683, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30029573

RESUMO

We show that polar molecules (water, ammonia, and nitrogen dioxide) adsorbed solely at the exposed edges of an encapsulated graphene sheet exhibit ferroelectricity, collectively orienting and switching reproducibly between two available states in response to an external electric field. This ferroelectric molecular switching introduces drastic modifications to the graphene bulk conductivity and produces a large and ambipolar charge bistability in micrometer-size graphene devices. This system comprises an experimental realization of envisioned memory capacitive ("memcapacitive") devices whose capacitance is a function of their charging history, here conceived via confined and correlated polar molecules at the one-dimensional edge of a two-dimensional crystal.

10.
J Phys Condens Matter ; 30(25): 25LT01, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29762126

RESUMO

We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

11.
Nat Commun ; 8: 15783, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598421

RESUMO

The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA