Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
BMC Bioinformatics ; 25(1): 110, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475691

RESUMO

BACKGROUND: The analysis of large and complex biological datasets in bioinformatics poses a significant challenge to achieving reproducible research outcomes due to inconsistencies and the lack of standardization in the analysis process. These issues can lead to discrepancies in results, undermining the credibility and impact of bioinformatics research and creating mistrust in the scientific process. To address these challenges, open science practices such as sharing data, code, and methods have been encouraged. RESULTS: CREDO, a Customizable, REproducible, DOcker file generator for bioinformatics applications, has been developed as a tool to moderate reproducibility issues by building and distributing docker containers with embedded bioinformatics tools. CREDO simplifies the process of generating Docker images, facilitating reproducibility and efficient research in bioinformatics. The crucial step in generating a Docker image is creating the Dockerfile, which requires incorporating heterogeneous packages and environments such as Bioconductor and Conda. CREDO stores all required package information and dependencies in a Github-compatible format to enhance Docker image reproducibility, allowing easy image creation from scratch. The user-friendly GUI and CREDO's ability to generate modular Docker images make it an ideal tool for life scientists to efficiently create Docker images. Overall, CREDO is a valuable tool for addressing reproducibility issues in bioinformatics research and promoting open science practices.


Assuntos
Biologia Computacional , Software , Reprodutibilidade dos Testes , Biologia Computacional/métodos
2.
Sci Data ; 11(1): 159, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307867

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a vital tool in tumour research, enabling the exploration of molecular complexities at the individual cell level. It offers new technical possibilities for advancing tumour research with the potential to yield significant breakthroughs. However, deciphering meaningful insights from scRNA-seq data poses challenges, particularly in cell annotation and tumour subpopulation identification. Efficient algorithms are therefore needed to unravel the intricate biological processes of cancer. To address these challenges, benchmarking datasets are essential to validate bioinformatics methodologies for analysing single-cell omics in oncology. Here, we present a 10XGenomics scRNA-seq experiment, providing a controlled heterogeneous environment using lung cancer cell lines characterised by the expression of seven different driver genes (EGFR, ALK, MET, ERBB2, KRAS, BRAF, ROS1), leading to partially overlapping functional pathways. Our dataset provides a comprehensive framework for the development and validation of methodologies for analysing cancer heterogeneity by means of scRNA-seq.


Assuntos
Benchmarking , Neoplasias Pulmonares , Humanos , Algoritmos , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única , Linhagem Celular Tumoral
3.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079732

RESUMO

MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1.


Assuntos
Software , Humanos , Animais , Análise por Conglomerados , Fatores de Tempo , Modelos Animais de Doenças , Medição de Risco
4.
Methods Mol Biol ; 2584: 205-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495451

RESUMO

The first step in single-cell RNAseq data analysis is the evaluation of the overall quality of the cell transcriptome and the preparation of the single-cell transcription data for clustering. In this chapter, we describe one of the possible approaches to perform single-cell data preprocessing for 3' end single-cell RNAseq transcriptomics data.


Assuntos
Perfilação da Expressão Gênica , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , Transcriptoma , Análise por Conglomerados , Análise de Célula Única
5.
Methods Mol Biol ; 2584: 217-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495452

RESUMO

An important step in single-cell RNAseq data analysis is the preparation of the single cell transcription data for cell sub-population partitioning. In this chapter, we describe how to perform complexity reduction for 3' end single-cell RNAseq transcriptomics data.


Assuntos
Perfilação da Expressão Gênica , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , Análise de Célula Única
6.
Methods Mol Biol ; 2584: 231-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495453

RESUMO

Single-cell RNA sequencing (scRNA-seq) allows for the creation of large collections of individual cells transcriptome. Unsupervised clustering is an essential element for the analysis of these data, and it represents the initial step for the identification of different cell types to investigate the cell subpopulation structure of a biological sample. However, it is possible that the clustering aggregation features do not perfectly match the underlying biology since scRNA-seq data are characterized by high noise. In this chapter, we describe a functional feature-driven data reduction approach, which could provide a better link among cell clusters and their underlying cell biology.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Análise de Sequência de RNA , Análise por Conglomerados , Transcriptoma , Algoritmos
7.
Methods Mol Biol ; 2584: 241-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495454

RESUMO

Single-cell RNA sequencing (scRNA-seq) allows the creation of large collections of individual cells transcriptome. Unsupervised clustering is an essential element for the analysis of these data, and it represents the initial step for the identification of different cell types to investigate the cell subpopulation organization of a sample. In this chapter, we describe how to approach the clustering of single-cell RNAseq transcriptomics data using various clustering tools, and we provide some information on the limitations affecting the clustering procedure.


Assuntos
Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Algoritmos
8.
Methods Mol Biol ; 2584: 311-335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495458

RESUMO

rCASC is a modular workflow providing an integrated environment for single-cell RNA-seq (scRNA-Seq) data analysis exploiting Docker containers to achieve functional and computational reproducibility. It was initially developed as an R package usable also through a Java GUI. However, the Java frontend cannot be employed when running rCASC on a remote server, a typical setup due to the significant computational resources commonly needed to analyze scRNA-Seq data.To allow the use of rCASC through a graphical user interface on the client side and to harness the many advantages provided by the Galaxy platform, we have made rCASC available as a Galaxy set of tools, also providing a dedicated public instance of Galaxy named "Galaxy-rCASC." To integrate rCASC into Galaxy, all its functions, originally implemented as a set of Docker containers to maximize reproducibility, have been extensively reworked to become independent from the R package functions that launch them in the original implementation. Furthermore, suitable Galaxy wrappers have been developed for most functions of rCASC. We provide a detailed reference document to the use of Galaxy-rCASC with insights and explanations on the platform functionalities, parameters, and output while guiding the reader through the typical rCASC analysis workflow of a scRNA-Seq dataset.


Assuntos
Análise da Expressão Gênica de Célula Única , Software , Humanos , Reprodutibilidade dos Testes , Análise de Dados , Fluxo de Trabalho , Análise de Célula Única , Biologia Computacional
9.
Front Aging Neurosci ; 14: 785741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250537

RESUMO

OBJECTIVES: There is a lack of effective biomarkers for neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia. Extracellular vesicle (EV) RNA cargo can have an interesting potential as a non-invasive biomarker for NDs. However, the knowledge about the abundance of EV-mRNAs and their contribution to neurodegeneration is not clear. METHODS: Large and small EVs (LEVs and SEVs) were isolated from plasma of patients and healthy volunteers (control, CTR) by differential centrifugation and filtration, and RNA was extracted. Whole transcriptome was carried out using next generation sequencing (NGS). RESULTS: Coding RNA (i.e., mRNA) but not long non-coding RNAs (lncRNAs) in SEVs and LEVs of patients with ALS could be distinguished from healthy CTRs and from other NDs using the principal component analysis (PCA). Some mRNAs were found in commonly deregulated between SEVs of patients with ALS and frontotemporal dementia (FTD), and they were classified in mRNA processing and splicing pathways. In LEVs, instead, one mRNA and one antisense RNA (i.e., MAP3K7CL and AP003068.3) were found to be in common among ALS, FTD, and PD. No deregulated mRNAs were found in EVs of patients with AD. CONCLUSION: Different RNA regulation occurs in LEVs and SEVs of NDs. mRNAs and lncRNAs are present in plasma-derived EVs of NDs, and there are common and specific transcripts that characterize LEVs and SEVs from the NDs considered in this study.

10.
Front Oncol ; 12: 1085672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698412

RESUMO

Anaplastic Large Cell Lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma frequently driven by the chimeric tyrosine kinase NPM-ALK, generated by the t (2,5)(p23;q35) translocation. While ALK+ ALCL belongs to mature T cell lymphomas, loss of T cell identity is observed in the majority of ALCL secondary to a transcriptional and epigenetic repressive program induced by oncogenic NPM-ALK. While inhibiting the expression of T cell molecules, NPM-ALK activates surrogate TCR signaling by directly inducing pathways downstream the TCR. CD45 is a tyrosine phosphatase that plays a central role in T cell activation by controlling the TCR signaling and regulating the cytokine responses through the JAK/STAT pathway and exists in different isoforms depending on the stage of T-cell maturation, activation and differentiation. ALK+ ALCL cells mainly express the isoform CD45RO in keeping with their mature/memory T cell phenotype. Because of its regulatory effect on the JAK/STAT pathway that is essential for ALK+ ALCL, we investigated whether CD45 expression was affected by oncogenic ALK. We found that most ALK+ ALCL cell lines express the CD45RO isoform with modest CD45RA expression and that NPM-ALK regulated the expression of these CD45 isoforms. Regulation of CD45 expression was dependent on ALK kinase activity as CD45RO expression was increased when NPM-ALK kinase activity was inhibited by treatment with ALK tyrosine kinase inhibitors (TKIs). Silencing ALK expression through shRNA or degradation of ALK by the PROTAC TL13-112 caused upregulation of CD45RO both at mRNA and protein levels with minimal changes on CD45RA, overall indicating that oncogenic ALK downregulates the expression of CD45. CD45 repression was mediated by STAT3 as demonstrated by ChIP-seq data on ALCL cells treated with the ALK-TKI crizotinib or cells treated with a STAT3 degrader. Next, we found that knocking-out CD45 with the CRISPR/Cas9 system resulted in increased resistance to ALK TKI treatment and CD45 was down-regulated in ALCL cells that developed resistance in vitro to ALK TKIs. Overall, these data suggest that CD45 expression is regulated by ALK via STAT3 and acts as a rheostat of ALK oncogenic signaling and resistance to TKI treatment in ALCL.

11.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884559

RESUMO

BACKGROUND: Biological processes are based on complex networks of cells and molecules. Single cell multi-omics is a new tool aiming to provide new incites in the complex network of events controlling the functionality of the cell. METHODS: Since single cell technologies provide many sample measurements, they are the ideal environment for the application of Deep Learning and Machine Learning approaches. An autoencoder is composed of an encoder and a decoder sub-model. An autoencoder is a very powerful tool in data compression and noise removal. However, the decoder model remains a black box from which is impossible to depict the contribution of the single input elements. We have recently developed a new class of autoencoders, called Sparsely Connected Autoencoders (SCA), which have the advantage of providing a controlled association among the input layer and the decoder module. This new architecture has the benefit that the decoder model is not a black box anymore and can be used to depict new biologically interesting features from single cell data. RESULTS: Here, we show that SCA hidden layer can grab new information usually hidden in single cell data, like providing clustering on meta-features difficult, i.e. transcription factors expression, or not technically not possible, i.e. miRNA expression, to depict in single cell RNAseq data. Furthermore, SCA representation of cell clusters has the advantage of simulating a conventional bulk RNAseq, which is a data transformation allowing the identification of similarity among independent experiments. CONCLUSIONS: In our opinion, SCA represents the bioinformatics version of a universal "Swiss-knife" for the extraction of hidden knowledgeable features from single cell omics data.


Assuntos
Adenocarcinoma de Pulmão/patologia , Análise por Conglomerados , Biologia Computacional/métodos , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Redes Neurais de Computação , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão/genética , Humanos , Neoplasias Pulmonares/genética , Sequenciamento do Exoma
12.
BMC Bioinformatics ; 22(Suppl 15): 544, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749633

RESUMO

BACKGROUND: Improving the availability and usability of data and analytical tools is a critical precondition for further advancing modern biological and biomedical research. For instance, one of the many ramifications of the COVID-19 global pandemic has been to make even more evident the importance of having bioinformatics tools and data readily actionable by researchers through convenient access points and supported by adequate IT infrastructures. One of the most successful efforts in improving the availability and usability of bioinformatics tools and data is represented by the Galaxy workflow manager and its thriving community. In 2020 we introduced Laniakea, a software platform conceived to streamline the configuration and deployment of "on-demand" Galaxy instances over the cloud. By facilitating the set-up and configuration of Galaxy web servers, Laniakea provides researchers with a powerful and highly customisable platform for executing complex bioinformatics analyses. The system can be accessed through a dedicated and user-friendly web interface that allows the Galaxy web server's initial configuration and deployment. RESULTS: "Laniakea@ReCaS", the first instance of a Laniakea-based service, is managed by ELIXIR-IT and was officially launched in February 2020, after about one year of development and testing that involved several users. Researchers can request access to Laniakea@ReCaS through an open-ended call for use-cases. Ten project proposals have been accepted since then, totalling 18 Galaxy on-demand virtual servers that employ ~ 100 CPUs, ~ 250 GB of RAM and ~ 5 TB of storage and serve several different communities and purposes. Herein, we present eight use cases demonstrating the versatility of the platform. CONCLUSIONS: During this first year of activity, the Laniakea-based service emerged as a flexible platform that facilitated the rapid development of bioinformatics tools, the efficient delivery of training activities, and the provision of public bioinformatics services in different settings, including food safety and clinical research. Laniakea@ReCaS provides a proof of concept of how enabling access to appropriate, reliable IT resources and ready-to-use bioinformatics tools can considerably streamline researchers' work.


Assuntos
COVID-19 , Computação em Nuvem , Biologia Computacional , Humanos , SARS-CoV-2 , Software
13.
Blood Adv ; 5(23): 5239-5257, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34625792

RESUMO

The expression of BCL6 in B-cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions, or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase that is involved in the degradation of BCL6, and it is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of patients with Burkitt lymphoma (BL). FBXO11 mutations impaired BCL6 degradation, and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of 1 or 2 copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B-cell lymphoma onset, providing experimental evidence that FBXO11 is a haploinsufficient oncosuppressor in B-cell lymphoma. In wild-type and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degraders or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL, we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches, such as BCL6 degraders and direct MYC inhibition, could be exploited as a targeted therapy for BL.


Assuntos
Linfoma de Burkitt , Proteínas F-Box , Linfoma de Células B , Animais , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Proteínas F-Box/genética , Genes myc , Humanos , Linfoma de Células B/genética , Camundongos , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
14.
Br J Haematol ; 194(2): 378-381, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34002365

RESUMO

Minimal residual disease (MRD) determined by classic polymerase chain reaction (PCR) methods is a powerful outcome predictor in mantle cell lymphoma (MCL). Nevertheless, some technical pitfalls can reduce the rate of of molecular markers. Therefore, we applied the EuroClonality-NGS IGH (next-generation sequencing immunoglobulin heavy chain) method (previously published in acute lymphoblastic leukaemia) to 20 MCL patients enrolled in an Italian phase III trial sponsored by Fondazione Italiana Linfomi. Results from this preliminary investigation show that EuroClonality-NGS IGH method is feasible in the MCL context, detecting a molecular IGH target in 19/20 investigated cases, allowing MRD monitoring also in those patients lacking a molecular marker for classical screening approaches.


Assuntos
Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma de Célula do Manto/genética , Biomarcadores Tumorais/genética , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Itália/epidemiologia , Linfoma de Célula do Manto/diagnóstico , Linfoma de Célula do Manto/epidemiologia , Neoplasia Residual/diagnóstico , Neoplasia Residual/epidemiologia , Neoplasia Residual/genética
16.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800495

RESUMO

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Assuntos
MicroRNA Circulante/sangue , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Doenças Neurodegenerativas/sangue , Transdução de Sinais , Idoso , Idoso de 80 Anos ou mais , MicroRNA Circulante/genética , Vesículas Extracelulares/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética
17.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921709

RESUMO

BACKGROUND: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. METHODS: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. RESULTS: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. CONCLUSIONS: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.


Assuntos
Aprendizado Profundo , Éxons/genética , Variação Genética/genética , Humanos , Redes Neurais de Computação
18.
Methods Mol Biol ; 2284: 181-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33835443

RESUMO

Analysis of circular RNA (circRNA) expression from RNA-Seq data can be performed with different algorithms and analysis pipelines, tools allowing the extraction of heterogeneous information on the expression of this novel class of RNAs. Computational pipelines were developed to facilitate the analysis of circRNA expression by leveraging different public tools in easy-to-use pipelines. This chapter describes the complete workflow for a computationally reproducible analysis of circRNA expression starting for a public RNA-Seq experiment. The main steps of circRNA prediction, annotation, classification, sequence reconstruction, quantification, and differential expression are illustrated.


Assuntos
Biologia Computacional/métodos , RNA Circular/análise , RNA-Seq/métodos , Algoritmos , Conjuntos de Dados como Assunto/estatística & dados numéricos , Humanos , RNA Circular/química , RNA Circular/genética , RNA não Traduzido/análise , RNA não Traduzido/química , RNA não Traduzido/genética , RNA-Seq/estatística & dados numéricos , Análise de Sequência de RNA , Software , Transcriptoma
19.
Methods Mol Biol ; 2284: 289-301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33835449

RESUMO

Single-cell RNAseq data can be generated using various technologies, spanning from isolation of cells by FACS sorting or droplet sequencing, to the use of frozen tissue sections retaining spatial information of cells in their morphological context. The analysis of single cell RNAseq data is mainly focused on the identification of cell subpopulations characterized by specific gene markers that can be used to purify the population of interest for further biological studies. This chapter describes the steps required for dataset clustering and markers detection using a droplet dataset and a spatial transcriptomics dataset.


Assuntos
Biologia Computacional/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodos
20.
Sci Rep ; 11(1): 1563, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452364

RESUMO

We established patient-derived xenografts (PDX) from human primary breast cancers and studied whether stability or progressive events occurred during long-term in vivo passages (up to 4 years) in severely immunodeficient mice. While most PDX showed stable biomarker expression and growth phenotype, a HER2-positive PDX (PDX-BRB4) originated a subline (out of 6 studied in parallel) that progressively acquired a significantly increased tumor growth rate, resistance to cell senescence of in vitro cultures, increased stem cell marker expression and high lung metastatic ability, along with a strong decrease of BCL2 expression. RNAseq analysis of the progressed subline showed that BCL2 was connected to three main hub genes also down-regulated (CDKN2A, STAT5A and WT1). Gene expression of progressed subline suggested a partial epithelial-to-mesenchymal transition. PDX-BRB4 with its progressed subline is a preclinical model mirroring the clinical paradox of high level-BCL2 as a good prognostic factor in breast cancer. Sequential in vivo passages of PDX-BRB4 chronically treated with trastuzumab developed progressive loss of sensitivity to trastuzumab while HER2 expression and sensitivity to the pan-HER tyrosine kinase inhibitor neratinib were maintained. Long-term PDX studies, even though demanding, can originate new preclinical models, suitable to investigate the mechanisms of breast cancer progression and new therapeutic approaches.


Assuntos
Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral/metabolismo , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/uso terapêutico , Trastuzumab/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA