RESUMO
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Transcriptoma/imunologia , Adolescente , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Linfócitos T CD8-Positivos/metabolismo , COVID-19/genética , Criança , Pré-Escolar , Regulação para Baixo , Feminino , Humanos , Lactente , Recém-Nascido , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/imunologia , SARS-CoV-2/patogenicidade , Síndrome de Resposta Inflamatória Sistêmica/genética , Adulto JovemRESUMO
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and multiple organ involvement in individuals under 21 years following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To identify genes, pathways and cell types driving MIS-C, we sequenced the blood transcriptomes of MIS-C cases, pediatric cases of coronavirus disease 2019, and healthy controls. We define a MIS-C transcriptional signature partially shared with the transcriptional response to SARS-CoV-2 infection and with the signature of Kawasaki disease, a clinically similar condition. By projecting the MIS-C signature onto a co-expression network, we identified disease gene modules and found genes downregulated in MIS-C clustered in a module enriched for the transcriptional signatures of exhausted CD8 + T-cells and CD56 dim CD57 + NK cells. Bayesian network analyses revealed nine key regulators of this module, including TBX21 , a central coordinator of exhausted CD8 + T-cell differentiation. Together, these findings suggest dysregulated cytotoxic lymphocyte response to SARS-Cov-2 infection in MIS-C.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.