Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220187, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866390

RESUMO

The latest assessment report from the Intergovernmental Panel on Climate Change concluded that the Atlantic Meridional Overturning Circulation (AMOC) was very likely to decline over the twenty-first century under all emissions scenarios; however, there was low confidence in the magnitude of the decline. Recent research has highlighted that model biases in the mean climate state can affect the AMOC in its mean state, variability and its response to climate change. Hence, understanding and reducing these model biases is critical for reducing uncertainty in the future changes of the AMOC and in its impacts on the wider climate. We discuss how model biases, in particular salinity biases, influence the AMOC and deep convection. We then focus on biases in the UK HadGEM3-GC3-1 climate model and how these biases change with resolution. We also discuss ongoing model development activities that affect these biases, and highlight priorities for improved representation of processes, such as the position of the North Atlantic Current, transports in narrow boundary current, resolution (or improved parameterization) of eddies and spurious numerical mixing in overflows. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
J Adv Model Earth Syst ; 10(11): 2865-2888, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30774751

RESUMO

A new climate model, HadGEM3 N96ORCA1, is presented that is part of the GC3.1 configuration of HadGEM3. N96ORCA1 has a horizontal resolution of ~135 km in the atmosphere and 1° in the ocean and requires an order of magnitude less computing power than its medium-resolution counterpart, N216ORCA025, while retaining a high degree of performance traceability. Scientific performance is compared to both observations and the N216ORCA025 model. N96ORCA1 reproduces observed climate mean and variability almost as well as N216ORCA025. Patterns of biases are similar across the two models. In the northwest Atlantic, N96ORCA1 shows a cold surface bias of up to 6 K, typical of ocean models of this resolution. The strength of the Atlantic meridional overturning circulation (16 to 17 Sv) matches observations. In the Southern Ocean, a warm surface bias (up to 2 K) is smaller than in N216ORCA025 and linked to improved ocean circulation. Model El Niño/Southern Oscillation and Atlantic Multidecadal Variability are close to observations. Both the cold bias in the Northern Hemisphere (N96ORCA1) and the warm bias in the Southern Hemisphere (N216ORCA025) develop in the first few decades of the simulations. As in many comparable climate models, simulated interhemispheric gradients of top-of-atmosphere radiation are larger than observations suggest, with contributions from both hemispheres. HadGEM3 GC3.1 N96ORCA1 constitutes the physical core of the UK Earth System Model (UKESM1) and will be used extensively in the Coupled Model Intercomparison Project 6 (CMIP6), both as part of the UK Earth System Model and as a stand-alone coupled climate model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA