Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Faraday Discuss ; 248(0): 190-209, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37800181

RESUMO

The rechargeable lithium air (oxygen) battery (Li-O2) has very high energy density, comparable to that of fossil fuels (∼3600 W h kg-1). However, the parasitic reactions of the O2 reduction products with solvent and electrolyte lead to capacity fading and poor cyclability. During the oxygen reduction reaction (ORR) in aprotic solvents, the superoxide radical anion (O2˙-) is the main one-electron reaction product, which in the presence of Li+ ions undergoes disproportionation to yield Li2O2 and O2, a fraction of which results in singlet oxygen (1O2). The very reactive 1O2 is responsible for the spurious reactions that lead to high charging overpotential and short cycle life due to solvent and electrolyte degradation. Several techniques have been used for the detection and suppression of 1O2 inside a Li-O2 battery under operation and to test the efficiency and electrochemical stability of different physical quenchers of 1O2: azide anions, 1,4-diazabicyclo[2.2.2]octane (DABCO) and triphenylamine (TPA) in different solvents (dimethyl sulfoxide (DMSO), diglyme and tetraglyme). Operando detection of 1O2 inside the battery was accomplished by following dimethylanthracene fluorescence quenching using a bifurcated optical fiber in front-face mode through a quartz window in the battery. Differential oxygen-pressure measurements during charge-discharge cycles vs. charge during battery operation showed that the number of electrons per oxygen molecule was n > 2 in the absence of physical quenchers of 1O2, due to spurious reactions, and n = 2 in the presence of physical quenchers of 1O2, proving the suppression of spurious reactions. Battery cycling at a limited specific capacity of 500 mA h gC-1 for the MWCNT cathode and 250 mA gC-1 current density, in the absence and presence of a physical quencher or a physical quencher plus the redox mediator I3-/I- (with a lithiated Nafion® membrane), showed increasing cyclability according to coulombic efficiency and cell voltage data over 100 cycles. Operando Raman studies with a quartz window at the bottom of the battery allowed detection of Li2O2 and excess I3- redox mediator during discharge and charge, respectively.

5.
Phys Chem Chem Phys ; 22(29): 16615-16623, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32671355

RESUMO

In situ subtractively normalized Fourier transform infrared spectroscopy (SNIFTIRS) experiments were performed simultaneously with electrochemical experiments relevant to Li-air battery operation on gold electrodes in two glyme-based electrolytes: diglyme (DG) and tetraglyme (TEGDME), tested under different operational conditions. The results show that TEGDME is intrinsically unstable and decomposes at potentials between 3.6 and 3.9 V vs. Li+/Li even in the absence of oxygen and lithium ions, while DG shows a better stability, and only decomposes at 4.0 V vs. Li+/Li in the presence of oxygen. The addition of water to the DG based electrolyte exacerbates its decomposition, probably due to the promotion of singlet oxygen formation.

6.
Langmuir ; 35(19): 6297-6303, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31012590

RESUMO

Metal-nanoparticle-mediated electron transfer (ET) across an insulator thin film containing nanoparticles with attached redox centers was studied using electrochemical impedance spectroscopy. Specifically, a gold spherical microelectrode was modified with 16-amino-1-hexa-decanethiol, creating an insulator film. This was followed by the electrostatic adsorption of gold nanoparticles and the covalent attachment of Os2+ redox centers. A variation of the Creager-Wooster method was developed to get quantitative information regarding the ET kinetics of the system. The experimental data obtained from a single measurement was fitted with a model that decouples two or more ET processes with different time constants and considers a Gaussian distribution of tunneling distances. Two parallel ET mechanisms were observed: one in which the electrons flow by tunneling between the surface and the redox couples with a low kET0 = 1.3 s-1 and a second one in which an enhancement of the electron transfer is produced due to the presence of the gold nanoparticles with a kET0 = 7 × 104 s-1. In this study, we demonstrate that the gold nanoparticle electron transfer enhancement is present only in the local environment of the nanoparticle, showing that the nanoscale architecture is crucial to maximize the enhancement effect.

7.
Chemphyschem ; 19(13): 1599-1604, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29601134

RESUMO

The coordination of PySSPy to FePc was monitored by UV/Vis spectroscopy while the adsobed FePc, anchored by PyS-Au(111), was examined by in situ STM in 0.1 M HClO4 and X-ray photoelectron spectroscopy (XPS). Rotating-disc-electrode (RDE) and linear-sweep-voltammetry (LSV) studies on the resulting FePc-modified Au(111) electrodes in an oxygen-saturated 0.1 M NaOH electrolyte exhibit excellent electrocatalytic properties for the oxygen reduction reaction (ORR), with a smaller overpotential than that observed for Au(111) with FePc deposited by direct adsorption from a benzene solution.

8.
Langmuir ; 33(38): 9565-9572, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28849939

RESUMO

4-Mercaptopyridine (4MPy) self-assembled on Au(111) has been studied by in situ electrochemical scanning tunneling microscopy (EC-STM) in HClO4, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Samples prepared by varying the immersion time at constant concentration named short time (30 s) and long time (3 min) adsorption have been studied. Cyclic voltammetry and XPS showed that the chemistry of the adsorbed molecules does not depend on the adsorption time resulting in a well established chemisorbed thiol self-assembled monolayer on Au(111). EC-STM study of the short time adsorption sample revealed a new self-assembled structure after a cathodic desorption/readsorption sweep, which remains stable only if the potential is kept negative to the Au(111) zero charge potential (EPZC). DFT calculations have shown a correlation between the observed structure and a dense weakly adsorbed phase with a surface coverage of θ = 0.4 and a (5 × âˆš3) lattice configuration. At potentials positive to the EPZC, the weakly adsorbed state becomes unstable, and a different structure is formed due to the chemisorption driven by the electrostatic interaction. Long time adsorption experiments, on the other hand, have shown the typical (5 × âˆš3) structure with θ = 0.2 surface coverage (chemisorbed phase) and are stable over the whole potential range. The difference observed in long time and short time immersion can be explained by the optimization of molecular interactions during the self-assembly process.

9.
Langmuir ; 32(27): 6836-42, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27308840

RESUMO

Palladium nanoparticles (Pd NPs) were formed by electrochemical reduction of Pd(NH3)4(3+) ions entrapped by ion exchange in poly(acrylic acid) (PAA) multilayer films grown by the Sharpless "click reaction." The alkyne (PAAalk) and azide (PAAaz) groups were covalently bound to the PAA, and the catalyzed buildup of the multilayer film was performed by electrochemical reduction of Cu(2+) to Cu(+). The size of the Pd NPs formed in Au/(PAAalk)3(PAAaz)2 multilayer films by the click reaction, that is, 50 nm, is larger than that of similar Pd NPs formed in electrostatically bound Au/(PAA)3(PAH)2 nanoreactors, that is, 6-9 nm, under similar conditions. A combination of electrochemical methods and electrochemical quartz crystal microbalance, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), ellipsometry, and scanning electron microscopy has been used to follow these processes. Cyclic voltammetry of the resulting Pd NPs in a 0.1 M H2SO4 solution at 0.1 V·s(-1) shows the PdO reduction peak at the same potential as that on the clean Pd surface unlike the NPs formed in electrostatically self-assembled Au/(PAA)3(PAH)2 nanoreactors with a 0.2 V shift in the cathodic direction most probably because of the strong adsorption of amino groups on the Pd NP surfaces.

10.
Bioelectrochemistry ; 109: 101-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26883057

RESUMO

The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentrations of hydrogen peroxide. Even though the overpotential at 0.25 mA·cm(-2) for the ORR at T1Cu of the adsorbed laccase on carbon is 0.8 V lower than for Pt of similar geometric area, the rate of the reaction and thus the operative current density is limited by the enzyme reaction rate at the T2/T3 cluster site for the adsorbed enzyme. The transition potential for the rate determining step from the direct electron transfer (DET) to the enzyme reaction shifts to higher potentials at higher oxygen partial pressure. Hydrogen peroxide produced by the ORR on bare carbon support participates in an inhibition mechanism, with uncompetitive predominance at high H2O2 concentration, non-competitive contribution can be detected at low inhibitor concentration.


Assuntos
Carbono/metabolismo , Enzimas Imobilizadas/metabolismo , Grafite/metabolismo , Lacase/metabolismo , Nanoestruturas/química , Oxigênio/metabolismo , Trametes/enzimologia , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Oxirredução , Trametes/metabolismo
11.
J Chem Phys ; 143(18): 184703, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567676

RESUMO

The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

12.
J Chem Phys ; 141(21): 214509, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481154

RESUMO

We present molecular dynamics simulation results pertaining to the solvation of Li(+) in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li(+) is compared to the ones observed for infinitely diluted K(+) and Cl(-) species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl(-) shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li(+)Cl(-), contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements.

13.
Anal Chem ; 86(24): 12180-4, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25420228

RESUMO

High potential purified Trametes trogii laccase has been deposited in mono- and multilayer thin films on gold surfaces by layer-by-layer electrostatic adsorption self-assembly. The osmium bipyridil redox relay sites on polycation poly(allylamine) backbone efficiently work as a molecular "wire" in oxygen cathodes for biofuel cells. X-ray photoelectron spectroscopy of Cu 2p3/2 and Os 4f signals provided chemical information on the enzyme and redox mediator surface concentrations after different adsorption steps. The electrical charge involved in oxidation-reduction cycles of the osmium sites, the ellipsometric enzyme film thickness, and the mass uptake from quartz crystal microbalance experiments, correlate with the XPS surface concentration, which provides unique evidence on the chemical identity of the composition in the topmost layers. XPS is shown to be an important analytical tool to investigate stratified copper and osmium distribution in LbL thin films relevant to biosensors and biofuel cells.


Assuntos
Eletrodos , Enzimas Imobilizadas/química , Lacase/química , Espectroscopia Fotoeletrônica/métodos , Oxirredução , Trametes/enzimologia
14.
Phys Chem Chem Phys ; 16(21): 9925-9, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24430211

RESUMO

Ex situ atomic force microscopy (AFM) has been used to study the morphology of oxygen reduction products in the LiPF6-dimethyl sulfoxide (DMSO) electrolyte, i.e. Li2O2 on a highly oriented pyrolytic graphite (HOPG) surface. Both cyclic voltammetry and chronoamperometry have shown that at low cathodic polarization the initial deposits decorate the edge steps of HOPG. At higher overpotentials a massive deposit covers the terraces. Upon charging the battery cathode Li2O2 oxidation and dissolution do not take place until high overpotentials are reached at which solvent decomposition has been demonstrated by in situ FTIR studies.

15.
Phys Chem Chem Phys ; 14(20): 7448-55, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22514022

RESUMO

Surface segregation effects on polycrystalline Au-Cu alloys (Au(0.80)Cu(0.20), Au(0.85)Cu(0.15) and Au(0.90)Cu(0.10)) were studied at room temperature by angle resolved XPS (ARXPS) and density functional theory (DFT) before and after exposure to O(2). Au surface enrichment was found as predicted from calculations showing that this process is energetically favourable, with a segregation energy for Au in a Cu matrix of -0.37 eV atom(-1). Surface enrichment with Cu was observed after exposure to O(2) due to its dissociative adsorption, in agreement with DFT calculations that predicted an energy gain of -1.80 eV atom(-1) for the transfer of Cu atoms to a surface containing adsorbed oxygen atoms, thus leading to an inversion in surface population.

16.
Chemphyschem ; 13(8): 2119-27, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22447583

RESUMO

Molecular films obtained by electrochemical reduction of diazoniuim tetrafluoroborate salts [4-carboxybenzene (PhCOOH) and 4-amino-(2,3,5,6-tetrafluoro)-carboxybenzene (PhF(4)COOH)] on Au substrates and post-functionalization with an osmium pyridil-bipyridine complex are studied by a combination of X-ray photoelectron (XPS) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS). The spectroscopic evidence suggests the formation of N=N bonds tethering the complexes to Au. The surface coverage of the azo-bonded osmium complexes strongly depends on the electrode potential. The resulting tethered osmium redox centres were characterized by cyclic voltammetry and impedance spectroscopy. Similar electron transfer-rate constants were measured for both fluorinated and non fluorinated benzene-linked Os complexes.

17.
Chem Commun (Camb) ; 46(47): 9004-6, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20957236

RESUMO

We present polyelectrolyte multilayer modified electrodes exhibiting novel chemically responsive redox behaviour due to the combination of both redox and metal-ion-ligand functionalities on the same sites.

18.
J Am Chem Soc ; 132(32): 11132-40, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698679

RESUMO

High potential purified Trametes trogii laccase has been studied as a biocatalyst for oxygen cathodes composed of layer-by-layer self-assembled thin films by sequential immersion of mercaptopropane sulfonate-modified Au electrode surfaces in solutions containing laccase and osmium-complex bound to poly(allylamine), (PAH-Os). The polycation backbone carries the Os redox relay, and the polyanion is the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. Enzyme thin films were characterized by quartz crystal microbalance, ellipsometry, cyclic voltammetry, and oxygen reduction electrocatalysis under variable oxygen partial pressures with a rotating disk electrode. New kinetic evidence relevant to biofuel cells is presented on the detection of traces of H(2)O(2), intermediate in the O(2) reduction, with scanning electrochemical microscopy (SECM). Furthermore the inhibitory effect of peroxide on the biocatalytic current resulted in abnormal current dependence on the O(2) partial pressure and peak shape with hysteresis in the polarization curves under stagnant conditions, which is offset upon stirring with the RDE. The new kinetic evidence reported in the present work is very relevant for the operation of biofuel cells under stagnant conditions of O(2) mass transport.


Assuntos
Fontes de Energia Bioelétrica , Peróxido de Hidrogênio/química , Lacase/metabolismo , Osmio/química , Oxigênio/química , Polímeros/química , Biocatálise , Difusão , Eletrodos , Cinética , Microscopia Eletrônica de Varredura , Oxirredução , Pressão , Rotação , Trametes/enzimologia
19.
Chemphyschem ; 11(13): 2957-68, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20629006

RESUMO

The redox switching kinetics, that is, charge transfer and transport in layer-by-layer-deposited electroactive polyelectrolyte multilayers is systematically studied with variable-scan-rate cyclic voltammetry. The experiments are performed with films finished in the redox polycation (an osmium pyridine-bipyridine derivatized polyallylamine, PAH-Os) and the polyanion (polyvinyl sulfonate, PVS), in solutions of different electrolyte concentrations. A modified diffusion model is developed to account for the experimentally observed dependence of the average peak potential with the scan rate. This model is able to describe both the redox peak potential and the current, providing information on the electron-transfer rate constants and the diffusion coefficient for the electron-hopping mechanism. While the former does not vary with the ionic strength or the nature of the outmost layer, polyanion-capped films present an electron-hopping diffusion coefficient at low ionic strength that is three orders of magnitude smaller than that for PAH-Os-capped films. The effect is offset at high ionic strength. We discuss the possible causes of the effect and the important consequences for electrochemical devices built by layer-by-layer self-assembly, such as amperometric biosensors or electrochromic devices.

20.
Langmuir ; 26(11): 8226-32, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20356031

RESUMO

A detailed polarization modulation infrared reflection absorption spectroscopy, scanning tunneling microscopy, and electrochemical study on methylene blue (MB) incorporation into alkanethiolate self-assembled monolayers (SAMs) on Au(111) is reported. Results show that the amount of MB incorporated in the SAMs reaches a maximum for intermediate hydrocarbon chain lengths (C10-C12). Well-ordered SAMs of long alkanethiols (C > C12) hinder the incorporation of the MB molecules into the SAM. On the other hand, less ordered SAMs of short alkanethiols (C < or = C6) are not efficient to retain the MB incorporated through the defects. For C12 the amount of incorporated MB increases as the SAM disorder is increased. This information is essential to the design of efficient thiol-based Au vectors for transport and delivery of molecules as well as thiol-based Au devices for molecular sensing.


Assuntos
Ouro/química , Hidrocarbonetos/química , Azul de Metileno/química , Eletroquímica , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA