RESUMO
Background: Cholesteatoma is a lesion capable of destroying surrounding tissues, which may result in significant complications. Surgical resection is the only effective treatment; however, the presence of cholesteatoma recidivism is common. This study evaluated the effectiveness of the Attic Exposure-Antrum Exclusion (AE-AE) surgical technique in treating cholesteatomas and identifying factors associated with recidivism. Additionally, the study aimed to assess the utility of non-echo-planar diffusion MRI (non-EPI-DWI MRI) in detecting cholesteatoma recidivism in patients undergoing AE-AE surgery. Methods: The study involved 63 patients who underwent AE-AE surgery for primary acquired cholesteatoma and were followed up clinically and radiologically for at least five years. The radiological follow-up included a non-EPI-DWI MRI. Results: Results showed that the AE-AE technique successfully treated cholesteatomas, with a recidivism rate of 5.2%. The study also found that non-EPI-DWI MRI was a useful diagnostic tool for detecting cholesteatoma recidivism, although false positives could occur due to the technique's high sensitivity. As Preoperative Pure-tone average (PTA) increases, there is a higher probability of cholesteatoma recidivism in imaging tests (p = 0.003). Conclusions: Overall, the study highlights the importance of the AE-AE surgical technique and non-EPI-DWI MRI in managing cholesteatoma recidivism in patients, providing valuable insights into associated risk factors and how to manage recidivism. Non-EPI-DWI MRI can assist in patient selection for revision surgery, reducing unnecessary interventions and associated risks while improving treatment outcomes and patient care.
Assuntos
Encefalite , Humanos , Masculino , Autoanticorpos/imunologia , Autoanticorpos/sangue , Encefalite/imunologia , Encefalite/diagnóstico , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/imunologia , Paralisia Supranuclear Progressiva/complicações , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/imunologia , Pessoa de Meia-IdadeRESUMO
Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.
Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Meios de Contraste , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Período Pré-OperatórioRESUMO
Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Espectroscopia de Ressonância Magnética/métodos , Imagem de Difusão por Ressonância MagnéticaRESUMO
Resection control in brain tumor surgery can be achieved in real time with intraoperative MRI (iMRI). Arterial spin labeling (ASL), a technique that measures cerebral blood flow (CBF) non-invasively without the use of intravenous contrast agents, can be performed intraoperatively, providing morpho-physiological information. This study aimed to evaluate the feasibility, image quality and potential to depict residual tumor of a pseudo-continuous ASL (PCASL) sequence at 3 T. Seventeen patients with brain tumors, primary (16) or metastatic (1), undergoing resection surgery with iMRI monitoring, were prospectively recruited (nine men, age 56 ± 16.6 years). A PCASL sequence with long labeling duration (3000 ms) and postlabeling delay (2000 ms) was added to the conventional protocol, which consisted of pre- and postcontrast 3D T1 -weighted (T1w) images, optional 3D-FLAIR, and diffusion. Three observers independently assessed the image quality (four-point scale) of PCASL-derived CBF maps. In those with diagnostic quality (Scores 2-4) they evaluated the presence of residual tumor using the conventional sequences first, and the CBF maps afterwards (three-point scale). Inter-observer agreement for image quality and the presence of residual tumor was assessed using Fleiss kappa statistics. The intraoperative CBF ratio of the surgical margins (i.e., perilesional CBF values normalized to contralateral gray matter CBF) was compared with preoperative CBF ratio within the tumor (Wilcoxon's test). Diagnostic ASL image quality was observed in 94.1% of patients (interobserver Fleiss κ = 0.76). PCASL showed additional foci suggestive of high-grade residual component in three patients, and a hyperperfused area extending outside the enhancing component in one patient. Interobserver agreement was almost perfect in the evaluation of residual tumor with the conventional sequences (Fleiss κ = 0.92) and substantial for PCASL (Fleiss κ = 0.80). No significant differences were found between pre and intraoperative CBF ratios (p = 0.578) in patients with residual tumor (n = 7). iMRI-PCASL perfusion is feasible at 3 T and is useful for the intraoperative assessment of residual tumor, providing in some cases additional information to the conventional sequences.
RESUMO
We report the case of a 7-month-old female patient who developed acute megakaryoblastic leukemia 6 months after the appearance of skull bone lesions. Initial evaluation and diagnosis of this patient were challenging and only achieved thanks to genomic analysis by NGS (next generation sequencing). It is unusual for the initial manifestation of acute megakaryoblastic leukemia to be a skull bone lesion. Extramedullary acute myeloid leukemia (eAML), also known as myeloid sarcoma (MS), often occurs simultaneously with acute myeloid leukemia (AML), although it may precede AML. Genomic analysis based on a NGS panel (Oncomine Childhood Cancer Research Assay) detected a RBM15::MKL1 fusion, a consequence of a t (1;22)(p13;q13) translocation, establishing the diagnosis of acute megakaryoblastic leukemia and enabling disease follow-up by qPCR. A diagnosis of eAML is built up from various findings in radiological, histological, immunophenotypic and genomic studies; when the tumor appears de novo, diagnosis is more complicated. We emphasize the importance of a multidisciplinary team in the initial approach to rare tumors and the use of genomic studies to contribute to the knowledge of these neoplasms, risk stratification and treatment planning.
RESUMO
PURPOSE: To describe the anatomic relationship of the lingual nerve with the lateral oropharyngeal structures. METHODS: An anatomic dissection of the lateral oropharyngeal wall was conducted in eight sides from four fresh-frozen cadaveric heads. Small titanium clips were placed along the lingual nerve and the most anterior and medial border of the medial pterygoid muscle. Radiological reconstructions were employed for optimal visualization; the coronal view was preferred to resemble the surgical position. The distance between the lingual nerve and the medial pterygoid muscle at its upper and lower portion was measured radiologically. The trajectory angle of the lingual nerve with respect to the pterygomandibular raphe was obtained from the intersection between the vector generated between the clips connecting the upper and lower portion of the medial pterygoid muscle with the vector generated from the lingual nerve clips. RESULTS: The mean distance from the upper portion of the medial pterygoid muscle and superior lingual nerve clips was 10.16 ± 2.18 mm (mean ± standard deviation), and the lower area of the medial pterygoid muscle to the lingual nerve was separated 5.05 ± 1.49 mm. The trajectory angle of the lingual nerve concerning to the vector that describes the upper portion of the most anterior and medial border of the medial pterygoid muscle with its lower part was 43.73º ± 11.29. CONCLUSIONS: The lingual nerve runs lateral to the lateral oropharyngeal wall, from superiorly-inferiorly and laterally-medially, and it is closer to it at its lower third.
Assuntos
Nervo Lingual , Procedimentos Cirúrgicos Bucais , Cadáver , Humanos , Nervo Lingual/anatomia & histologia , Nervo Lingual/cirurgia , Palato , Músculos Pterigoides/diagnóstico por imagem , Músculos Pterigoides/cirurgia , TitânioRESUMO
A pseudocontinuous arterial spin labeling (PCASL) sequence combined with background suppression and single-shot accelerated 3D RARE stack-of-spirals was used to evaluate cerebrovascular reactivity (CVR) induced by breath-holding (BH) in ten healthy volunteers. Four different models designed using the measured change in PETCO2 induced by BH were compared, for CVR quantification. The objective of this comparison was to understand which regressor offered a better physiological model to characterize the cerebral blood flow response under BH. The BH task started with free breathing of 42 s, followed by interleaved end-expiration BHs of 21 s, for ten cycles. The total scan time was 12 min and 20 s. The accelerated readout allowed the acquisition of PCASL data with better temporal resolution than previously used, without compromising the post-labeling delay. Elevated CBF was observed in most cerebral regions under hypercapnia, which was delayed with respect to the BH challenge. Significant statistical differences in CVR were obtained between the different models in GM (p < 0.0001), with ramp models yielding higher values than boxcar models and between the two tissues, GM and WM, with higher values in GM, in all the models (p < 0.0001). The adjustment of the ramp amplitude during each BH cycle did not improve the results compared with a ramp model with a constant amplitude equal to the mean PETCO2 change during the experiment.