Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1404347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882570

RESUMO

Introduction: Plantations located outside the species distribution area represent natural experiments to assess tree tolerance to climate variability. Climate change amplifies warming-related drought stress but also leads to more climate extremes. Methods: We studied plantations of the European larch (Larix decidua), a conifer native to central and eastern Europe, in northern Spain. We used climate, drought and tree-ring data from four larch plantations including wet (Valgañón, site V; Santurde, site S), intermediate (Ribavellosa, site R) and dry (Santa Marina, site M) sites. We aimed to benchmark the larch tolerance to climate and drought stress by analysing the relationships between radial growth increment (hereafter growth), climate data (temperature, precipitation, radiation) and a drought index. Results: Basal area increment (BAI) was the lowest in the driest site M (5.2 cm2 yr-1; period 1988-2022), followed by site R (7.5 cm2 yr-1), with the youngest and oldest and trees being planted in M (35 years) and R (150 years) sites. BAI peaked in the wettest sites (V; 10.4 cm2 yr-1; S, 10.8 cm2 yr-1). We detected a sharp BAI reduction (30% of the regional mean) in 2001 when springto-summer conditions were very dry. In the wettest V and S sites, larch growth positively responded to current March and June-July radiation, but negatively to March precipitation. In the R site, high April precipitation enhanced growth. In the driest M site, warm conditions in the late prior winter and current spring improved growth, but warm-sunny conditions in July and dry-sunny conditions in August reduced it. Larch growth positively responded to spring-summer wet conditions considering short (1-6 months) and long (9-24 months) time scales in dry (site M) and wet-intermediate (sites S and R) sites, respectively. Discussion: Larch growth is vulnerable to drought stress in dry slow-growing plantations, but also to extreme spring wet-cloudy events followed by dry-hot conditions in wet fast-growing plantations.

2.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577961

RESUMO

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Aquecimento Global , Mudança Climática , Clima
4.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451586

RESUMO

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Assuntos
Traqueófitas , Teorema de Bayes , Florestas , Temperatura Baixa , Temperatura , Mudança Climática , Estações do Ano
5.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
6.
Glob Chang Biol ; 28(12): 3871-3882, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35124877

RESUMO

Tree species display a wide variety of water-use strategies, growth rates and capacity to tolerate drought. However, if we want to forecast species capacity to cope with increasing aridity and drought, we need to identify which measurable traits confer resilience to drought across species. Here, we use a global tree ring network (65 species; 1931 site series of ring-width indices-RWI) to evaluate the relationship of long-term growth-drought sensitivity (RWI-SPEI drought index relationship) and short-term growth response to extreme drought episodes (resistance, recovery and resilience indices) with functional traits related to leaf, wood and hydraulic properties. Furthermore, we assess the influence of climate (temperature, precipitation and climatic water deficit) on these trait-growth relationships. We found a close correspondence between the long-term relationship between RWI and SPEI and resistance and recovery of tree growth to severe drought episodes. Species displaying a stronger RWI-SPEI relationship to drought and low resistance and high recovery to extreme drought episodes tended to have a higher wood density (WD) and more negative leaf minimum water potential (Ψmin). Such associations were largely maintained when accounting for direct climate effects. Our results indicate that, at a cross-species level and global scale, wood and hydraulic functional traits explain species' growth responses to drought at short- and long-term scales. These trait-growth response relationships can improve our understanding of the cross-species capacity to withstand climate change and inform models to better predict drought effects on forest ecosystem dynamics.


Assuntos
Secas , Madeira , Ecossistema , Árvores/fisiologia , Água/fisiologia , Madeira/fisiologia
8.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508887

RESUMO

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Assuntos
Ecossistema , Árvores , Mudança Climática , Temperatura Baixa , Temperatura
9.
Tree Physiol ; 40(7): 956-968, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32268377

RESUMO

Dendrometers are being increasingly used to measure stem radius changes in trees and to unravel the mechanisms underlying stem daily rhythms of radial expansion and contraction. Nevertheless, automated dendrometers have not been often used to measure root radius dynamics, their relationship with environmental variables and the influence of endogenous processes, especially in drought-prone Mediterranean areas. Here, we measured root radius dynamics of two coexisting oak species (the evergreen Quercus ilex L. and the deciduous Quercus faginea Lam). Our goals were to describe annual, seasonal and diurnal scale root radius patterns and to disentangle the role of different environmental parameters as drivers. Long-term high-resolution measurements (every 15 min over 7 years) were collected with automated point dendrometers on the main tree roots of five individuals per species. Root radius annual change patterns were bimodal and similar for both oak species. Quercus faginea Lam showed three times larger root increment in the spring than Q. ilex, but the bimodal pattern was stronger in Q. ilex, which showed a larger root increment in autumn. Quercus faginea Lam showed an earlier root phenological activation in the spring and in late summer compared with Q. ilex. The effects of environmental drivers across species were similar at daily scales: root radius increased with air temperature and soil moisture, and it decreased with rising vapor pressure deficit. Furthermore, daily root radius variations for both oak species were maintained after extracting statistically the environmental effects, which points toward a significant role of endogenous drivers. These differences in root radius change patterns at seasonal to daily scales likely result from the differences in leaf phenology and growth strategy. Quercus faginea Lam is deciduous and has a faster growing rate in spring than the evergreen Q. ilex, which can grow more in summer.


Assuntos
Quercus , Clima , Secas , Rádio (Anatomia) , Estações do Ano , Árvores
10.
Glob Chang Biol ; 26(2): 851-863, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31486191

RESUMO

A major component of climate change is an increase in temperature and precipitation variability. Over the last few decades, an increase in the frequency of extremely warm temperatures and drought severity has been observed across Europe. These warmer and drier conditions may reduce productivity and trigger compositional shifts in forest communities. However, we still lack a robust, biogeographical characterization of the negative impacts of climate extremes, such as droughts on forests. In this context, we investigated the impact of the 2017 summer drought on European forests. The normalized difference vegetation index (NDVI) was used as a proxy of forest productivity and was related to the standardized precipitation evapotranspiration index, which accounts for the temperature effects of the climate water balance. The spatial pattern of NDVI reduction in 2017 was largely driven by the extremely warm summer for parts of the central and eastern Mediterranean Basin (Italian and Balkan Peninsulas). The vulnerability to the 2017 summer drought was heterogeneously distributed over Europe, and topographic factors buffered some of the negative impacts. Mediterranean forests dominated by oak species were the most negatively impacted, whereas Pinus pinaster was the most resilient species. The impact of drought on the NDVI decreased at high elevations and mainly on east and north-east facing slopes. We illustrate how an adequate characterization of the coupling between climate conditions and forest productivity (NDVI) allows the determination of the most vulnerable areas to drought. This approach could be widely used for other extreme climate events and when considering other spatially resolved proxies of forest growth and health.


Assuntos
Secas , Temperatura Alta , Mudança Climática , Europa (Continente) , Florestas , Árvores
12.
Glob Chang Biol ; 25(8): 2825-2840, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31012512

RESUMO

The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi-arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi-arid Mediterranean pine forests in Spain over 1950-2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long-term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low-frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non-stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non-stationary effects of ENSO can be propagated from tropical areas to semi-arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea-air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long-term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought-prone forests and review the expected impacts of global warming on the profiled mechanisms.


Assuntos
Carbono , Florestas , Oceano Atlântico , Oceanos e Mares , Espanha , Temperatura
13.
Glob Chang Biol ; 25(3): 1089-1105, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536724

RESUMO

The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.


Assuntos
Modelos Biológicos , Temperatura , Traqueófitas/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Teorema de Bayes , Canadá , Mudança Climática , Europa (Continente) , Estações do Ano , Xilema/crescimento & desenvolvimento
14.
Front Plant Sci ; 9: 1582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429865

RESUMO

Drought stress causes a reduction in tree growth and forest productivity, which could be aggravated by climate warming and defoliation due to moth outbreaks. We investigate how European gypsy moth (Lymantria dispar dispar L., Lepidoptera: Erebidae) outbreak and related climate conditions affected growth and wood features in host and non-host tree species in north-western Spain. There, radiata pine (Pinus radiata D. Don) plantations and chestnut (Castanea sativa Mill.) stands were defoliated by the moth larvae, whereas Maritime pine (Pinus pinaster Ait.) was not defoliated. The gypsy moth outbreak peaked in 2012 and 2013, and it was preceded by very warm spring conditions in 2011 and a dry-warm 2011-2012 winter. Using dendrochronology we compared growth responses to climate and defoliation of host species (radiata pine, chestnut) with the non-host species (Maritime pine). We also analyzed wood density derived from X-ray densitometry in defoliated and non-defoliated trees of radiata pine. We aimed to: (i) disentangle the relative effects of defoliation and climate stress on radial growth, and (ii) characterize defoliated trees of radiata pine according to their wood features (ring-width, maximum and minimum density). Radial growth during the outbreak (2012-2013) decreased on average 74% in defoliated (>50% of leaf area removed) trees of radiata pine, 43% in defoliated trees of chestnut, and 4% in non-defoliated trees of Maritime pine. After applying a BACI (Before-After-Control-Impact) type analysis, we concluded that the difference in the pattern of radial growth before and during the defoliation event was more likely due to the differences in climate between these two periods. Radiata pines produced abundant latewood intra-annual density fluctuations in 2006 and 2009 in response to wet summer conditions, suggesting a high climatic responsiveness. Minimum wood density was lower in defoliated than in non-defoliated trees of radiata pine prior to the outbreak, but increased during the outbreak. The pre-outbreak difference in minimum wood density suggests that the trees most affected by the outbreak produced tracheids with wider lumen and were more susceptible to drought stress. Results of this study illustrate (i) that the pattern of radial growth alone may be not a good indicator for reconstructing past defoliation events and (ii) that wood variables are reliable indicators for assessing the susceptibility of radiata pine to defoliation by the gypsy moth.

15.
Glob Chang Biol ; 24(11): 5549-5559, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30153361

RESUMO

Among forest ecosystems, the alpine treeline ecotone can be considered to be a simplified model to study global ecology and climate change. Alpine treelines are expected to shift upwards in response to global warming given that tree recruitment and growth are assumed to be mainly limited by low temperatures. However, little is known whether precipitation and temperature interact to drive long-term Himalayan treeline dynamics. Tree growth is affected by spring rainfall in the central Himalayan treelines, being good locations for testing if, in addition to temperature, precipitation mediates treeline dynamics. To test this hypothesis, we reconstructed spatiotemporal variations in treeline dynamics in 20 plots located at six alpine treeline sites, dominated by two tree species (birch, fir), and situated along an east-west precipitation gradient in the central Himalayas. Our reconstructions evidenced that treelines shifted upward in response to recent climate warming, but their shift rates were primarily mediated by spring precipitation. The rate of upward shift was higher in the wettest eastern Himalayas, suggesting that its ascent rate was facilitated by spring precipitation. The drying tendency in association with the recent warming trends observed in the central Himalayas, however, will likely hinder an upslope advancement of alpine treelines and promote downward treeline shifts if moisture availability crosses a critical minimum threshold. Our study highlights the complexity of plant responses to climate and the need to consider multiple climate factors when analyzing treeline dynamics.


Assuntos
Aquecimento Global , Dispersão Vegetal , Chuva , Árvores/fisiologia , Altitude , Nepal , Fatores de Tempo
16.
Glob Chang Biol ; 24(5): 2143-2158, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29488293

RESUMO

Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.


Assuntos
Cycadopsida/fisiologia , Secas , Florestas , Magnoliopsida/fisiologia , Região do Mediterrâneo , Espanha , Fatores de Tempo
17.
Ecol Appl ; 28(1): 95-105, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944610

RESUMO

Climate change in the Mediterranean, associated with warmer temperatures and more frequent droughts, is expected to impact forest productivity and the functioning of forests ecosystems as carbon reservoirs in the region. Climate warming can positively affect forest growth by extending the growing season, whereas increasing summer drought generally reduces forest productivity and may cause growth decline, trigger dieback, hamper regeneration, and increase mortality. Forest management could potentially counteract such negative effects by reducing stand density and thereby competition for water. The effectiveness of such interventions, however, has so far mostly been evaluated for short time periods at the tree and stand levels, which limits our confidence regarding the efficacy of thinning interventions over longer time scales under the complex interplay between climate, stand structure, and forest management. In this study, we use a century-long historical data set to assess the effects of climate and management on forest productivity. We consider rear-edge Scots pine (Pinus sylvestris) populations covering continental and Mediterranean conditions along an altitudinal gradient in Central Spain. We use linear mixed-effects models to disentangle the effects of altitude, climate, and stand volume on forest growth and ingrowth (recruitment and young trees' growth). We find that warming tends to benefit these tree populations, warmer winter temperature has a significant positive effect on both forest growth and ingrowth, and the effect is more pronounced at low elevations. However, drought conditions severely reduce growth and ingrowth, in particular when competition (stand volume) is high. We conclude that summer droughts are the main threat to Scots pine populations in the region, and that a reduction of stand volume can partially mitigate the negative impacts of more arid conditions. Mitigation and adaptation measures could therefore manage stand structure to adopt for the anticipated impacts of climate change in Mediterranean forest ecosystems.


Assuntos
Biomassa , Florestas , Aquecimento Global , Pinus sylvestris/crescimento & desenvolvimento , Agricultura Florestal , Estações do Ano , Espanha
18.
Front Plant Sci ; 9: 1964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713543

RESUMO

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

19.
Glob Chang Biol ; 23(7): 2705-2719, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27782362

RESUMO

Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Clima , Secas , Modelos Teóricos , Espanha
20.
Glob Chang Biol ; 23(8): 3169-3180, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27885769

RESUMO

Climate warming is expected to enhance productivity and growth of woody plants, particularly in temperature-limited environments at the northernmost or uppermost limits of their distribution. However, this warming is spatially uneven and temporally variable, and the rise in temperatures differently affects biomes and growth forms. Here, applying a dendroecological approach with generalized additive mixed models, we analysed how the growth of shrubby junipers and coexisting trees (larch and pine species) responds to rising temperatures along a 5000-km latitudinal range including sites from the Polar, Alpine to the Mediterranean biomes. We hypothesize that, being more coupled to ground microclimate, junipers will be less influenced by atmospheric conditions and will less respond to the post-1950 climate warming than coexisting standing trees. Unexpectedly, shrub and tree growth forms revealed divergent growth trends in all the three biomes, with juniper performing better than trees at Mediterranean than at Polar and Alpine sites. The post-1980s decline of tree growth in Mediterranean sites might be induced by drought stress amplified by climate warming and did not affect junipers. We conclude that different but coexisting long-living growth forms can respond differently to the same climate factor and that, even in temperature-limited area, other drivers like the duration of snow cover might locally play a fundamental role on woody plants growth across Europe.


Assuntos
Secas , Juniperus , Árvores/crescimento & desenvolvimento , Ecossistema , Europa (Continente) , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA