Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Mol Neurosci ; 11: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559887

RESUMO

Chronic inflammatory process in the nasal mucosa is correlated with poor smell perception. Over-activation of immune cells in the olfactory epithelium (OE) is generally associated with loss of olfactory function, and topical steroidal anti-inflammatory drugs have been largely used for treating such condition. Whether this therapeutic strategy could directly affect the regenerative process in the OE remains unclear. In this study, we show that nasal topical application of dexamethasone (DEX; 200 or 800 ng/nostril), a potent synthetic anti-inflammatory steroid, attenuates OE lesion caused by Gram-negative bacteria lipopolysaccharide (LPS) intranasal infusion. In contrast, repeated DEX (400 ng/nostril) local application after lesion establishment limited the regeneration of olfactory sensory neurons after injury promoted by LPS or methimazole. Remarkably, DEX effects were observed when the drug was infused as 3 consecutive days regimen. The anti-inflammatory drug does not induce OE progenitor cell death, however, disturbance in mammalian target of rapamycin downstream signaling pathway and impairment of protein synthesis were observed during the course of DEX treatment. In addition, in vitro studies conducted with OE neurospheres in the absence of an inflammatory environment showed that glucocorticoid receptor engagement directly reduces OE progenitor cells proliferation. Our results suggest that DEX can interfere with the intrinsic regenerative cellular mechanisms of the OE, raising concerns on the use of topical anti-inflammatory steroids as a risk factor for progressive olfactory function impairment.

2.
Translation (Austin) ; 5(2): e1366294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29034140

RESUMO

Nonsense-mediated mRNA decay (NMD) couples protein synthesis to mRNA turnover. It eliminates defective transcripts and controls the abundance of certain normal mRNAs. Our study establishes a connection between NMD and the translation factor eIF5A (eukaryotic initiation factor 5A) in human cells. eIF5A modulates the synthesis of groups of proteins (the eIF5A regulon), and undergoes a distinctive two-step post-translational modification (hypusination) catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. We show that expression of NMD-susceptible constructs was increased by depletion of the major eIF5A isoform, eIF5A1. NMD was also attenuated when hypusination was inhibited by RNA interference with either of the two eIF5A modifying enzymes, or by treatment with the drugs ciclopirox or deferiprone which inhibit deoxyhypusine hydroxylase. Transcriptome analysis by RNA-Seq identified human genes whose expression is coordinately regulated by eIF5A1, its modifying enzymes, and the pivotal NMD factor, Upf1. Transcripts encoding components of the translation system were highly represented, including some encoding ribosomal proteins controlled by alternative splicing coupled to NMD (AS-NMD). Our findings extend and strengthen the association of eIF5A with NMD, previously inferred in yeast, and show that hypusination is important for this function of human eIF5A. In addition, they advance drug-mediated NMD suppression as a therapeutic opportunity for nonsense-associated diseases. We propose that regulation of mRNA stability contributes to eIF5A's role in selective gene expression.

3.
Biochem Biophys Res Commun ; 443(2): 592-7, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333428

RESUMO

In response to a range of environmental stresses, phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) represses general protein synthesis coincident with increased translation of specific mRNAs, such as those encoding the transcription activators GCN4 and ATF4. The eIF2α kinase GCN2 is activated by amino acid starvation by a mechanism involving GCN2 binding to an activator protein GCN1, along with association with uncharged tRNA that accumulates during nutrient deprivation. We previously showed that mammalian IMPACT and its yeast ortholog YIH1 bind to GCN1, thereby preventing GCN1 association with GCN2 and stimulation of this eIF2α kinase during amino acid depletion. GCN2 activity is also enhanced by other stresses, including proteasome inhibition, UV irradiation and lack of glucose. Here, we provide evidence that IMPACT affects directly and specifically the activation of GCN2 under these stress conditions in mammalian cells. We show that activation of mammalian GCN2 requires its interaction with GCN1 and that IMPACT promotes the dissolution of the GCN2-GCN1 complex. To a similar extent as the overexpression of YIH1, overexpression of IMPACT in yeast cells inhibited growth under all stress conditions that require GCN2 and GCN1 for cell survival, including exposure to acetic acid, high levels of NaCl, H2O2 or benomyl. This study extends our understanding of the roles played by GCN1 in GCN2 activation induced by a variety of stress arrangements and suggests that IMPACT and YIH1 use similar mechanisms for regulating this eIF2α kinase.


Assuntos
Proteínas de Transporte/metabolismo , Sequência Conservada/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Ativação Enzimática , Evolução Molecular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Dados de Sequência Molecular , Proteínas de Ligação a RNA , Transativadores
4.
PLoS One ; 8(9): e74414, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086341

RESUMO

HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.


Assuntos
Apoptose/efeitos dos fármacos , Infecções por HIV/patologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Células Cultivadas , Infecções por HIV/tratamento farmacológico , Humanos , Relação Estrutura-Atividade
5.
J Cell Physiol ; 218(3): 480-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19006180

RESUMO

The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with N1-guanyl-1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.


Assuntos
Diferenciação Celular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Arginina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Conectina , Regulação da Expressão Gênica/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/farmacologia , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteína MyoD/metabolismo , Oxirredução/efeitos dos fármacos , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/efeitos dos fármacos , Fator de Iniciação de Tradução Eucariótico 5A
6.
Brain Res ; 1228: 6-13, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18606156

RESUMO

Long-term memory, a persistent form of synaptic plasticity, requires translation of a subset of mRNA present in neuronal dendrites during a short and critical period through a mechanism not yet fully elucidated. Western blotting analysis revealed a high content of eukaryotic translation initiation factor 5A (eIF5A) in the brain of neonatal rats, a period of intense neurogenesis rate, differentiation and synaptic establishment, when compared to adult rats. Immunohistochemistry analysis revealed that eIF5A is present in the whole brain of adult rats showing a variable content among the cells from different areas (e.g. cortex, hippocampus and cerebellum). A high content of eIF5A in the soma and dendrites of Purkinje cells, key neurons in the control of motor long-term memory in the cerebellum, was observed. Detection of high eIF5A content was revealed in dendritic varicosities of Purkinje cells. Evidence is presented herein that a reduction of eIF5A content is associated to brain aging.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Encéfalo/citologia , Cerebelo/citologia , Cerebelo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Imunofluorescência , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Neurônios/citologia , Fatores de Iniciação de Peptídeos/análise , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Proteínas de Ligação a RNA/análise , Ratos , Ratos Wistar , Fator de Iniciação de Tradução Eucariótico 5A
7.
J Cell Physiol ; 217(1): 1-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18543263

RESUMO

In this review we updated the fatty acid (FA) effects on skeletal muscle metabolism. Abnormal FA availability induces insulin resistance and accounts for several of its symptoms and complications. Efforts to understand the pathogenesis of insulin resistance are focused on disordered lipid metabolism and consequently its effect on insulin signaling pathway. We reviewed herein the FA effects on metabolism, signaling, regulation of gene expression and oxidative stress in insulin resistance. The elevated IMTG content has been associated with increased intracellular content of diacylglycerol (DAG), ceramides and long-chain acyl-coenzyme A (LCA-CoA). This condition has been shown to promote insulin resistance by interfering with phosphorylation of proteins of the insulin pathway including insulin receptor substrate-1/2 (IRS), phosphatidylinositol-3-kinase, (PI3-kinase) and protein kinase C. Although the molecular mechanism is not completely understood, elevated reactive oxygen (ROS) and nitrogen species (RNS) are involved in this process. Elevated ROS/RNS activates nuclear factor-kappaB (NFkB), which promotes the transcription of proinflammatory tumoral necrosis factor alpha (TNFalpha), decreasing the insulin response. Therefore, oxidative stress induced by elevated FA availability may constitute one of the major causes of insulin resistance in skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA