Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0308950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150928

RESUMO

Eusocial insects, such as stingless bees (Meliponini), depend on division of labour, overlapping generations, and collaborative brood care to ensure the functionality and success of their colony. Female workers transition through a range of age-specific tasks during their lifespan (i.e., age-polyethism) and play a central role in the success of a colony. These age-specific tasks (e.g., brood care or foraging) often closely coincide with key physiological changes necessary to ensure optimal performance. However, our understanding of how nutrition, age, and polyethism may affect the development of such physiological traits in stingless bees remains limited. Here we show that pollen consumption and age-polyethism govern hypopharyngeal gland (HPG) acini size and protein content in Tetragonula pagdeni. By conducting a controlled laboratory experiment we monitored the effect of pollen consumption on worker bee survival as well as assessed how a pollen diet and age affected their HPG acini width and protein content. Further, we sampled nurses and foragers from field colonies to measure the effect of age-polyethism on HPG acini width. We found that pollen consumption enhanced survival and led to increased HPG acini width and protein content and that HPG acini were as expected largest in nurse bees. Our findings highlight the beneficial effects of an adequate diet for physiological development and health in stingless bees and reveal that age-polyethism is the key factor governing HPG size in worker bees. As HPGs are imperative for collaborative brood care-an essential component of eusociality-the data provide a foundation for future studies to investigate the impact of potential environmental stressors on a critical physiological trait in stingless bees which may serve as a proxy to understand the effects at the colony level.


Assuntos
Proteínas de Insetos , Animais , Abelhas/fisiologia , Abelhas/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Hipofaringe/metabolismo , Pólen/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Fatores Etários
2.
Ecotoxicology ; 33(6): 608-621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780664

RESUMO

In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.


Assuntos
Inseticidas , Neonicotinoides , Tiametoxam , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Inseticidas/toxicidade , Tiametoxam/toxicidade , Neonicotinoides/toxicidade , Estações do Ano , Nitrocompostos/toxicidade , Aclimatação , Tiazóis/toxicidade
3.
Sci Total Environ ; 833: 155098, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398139

RESUMO

Global insect biodiversity declines due to reduced fitness are linked to interactions between environmental stressors. In social insects, inclusive fitness depends on successful mating of reproductives, i.e. males and queens, and efficient collaborative brood care by workers. Therefore, interactive effects between malnutrition and environmental pollution on sperm and feeding glands (hypopharyngeal glands (HPGs)) would provide mechanisms for population declines, unless buffered against due to their fitness relevance. However, while negative effects for bumble bee colony fitness are known, the effects of malnutrition and insecticide exposure singly and in combination on individuals are poorly understood. Here we show, in a fully-crossed laboratory experiment, that malnutrition and insecticide exposure result in neutral or antagonistic interactions for spermatozoa and HPGs of bumble bees, Bombus terrestris, suggesting strong selection to buffer key colony fitness components. No significant effects were observed for mortality and consumption, but significant negative effects were revealed for spermatozoa traits and HPGs. The combined effects on these parameters were not higher than the individual stressor effects, which indicates an antagonistic interaction between both. Despite the clear potential for additive effects, due to the individual stressors impairing muscle quality and neurological control, simultaneous malnutrition and insecticide exposure surprisingly did not reveal an increased impact compared to individual stressors, probably due to key fitness traits being resilient. Our data support that stressor interactions require empirical tests on a case-by-case basis and need to be regarded in context to understand underlying mechanisms and so adequately mitigate the ongoing decline of the entomofauna.


Assuntos
Inseticidas , Desnutrição , Animais , Abelhas , Insetos , Inseticidas/toxicidade , Masculino , Reprodução , Espermatozoides
4.
Toxicol Rep ; 9: 36-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987978

RESUMO

Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g-1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.

5.
Sci Total Environ ; 785: 146955, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957580

RESUMO

Insecticides are contributing to global insect declines, thereby creating demand to understand the mechanisms underlying reduced fitness. In the eusocial Hymenoptera, inclusive fitness depends on successful mating of male sexuals (drones) and efficient collaborative brood care by female workers. Therefore, sublethal insecticide effects on sperm and glands used in larval feeding (hypopharyngeal glands (HPG)) would provide key mechanisms for population declines in eusocial insects. However, while negative impacts for bumblebee colony fitness have been documented, the effects of insecticide exposure on individual physiology are less well understood. Here, we show that field-realistic concentrations (4.5-40 ng ml-1) of the neonicotinoid insecticide thiamethoxam significantly impair Bombus terrestris sperm and HPGs, thereby providing plausible mechanisms underlying bumblebee population decline. In the laboratory, drones and workers were exposed to five thiamethoxam concentrations (4.5 to 1000 ng ml-1). Then, survival, food consumption, body mass, HPG development, sperm quantity and viability were assessed. At all concentrations, drones were more exposed than workers due to higher food consumption. Increased body mass was observed in drones starting at 20 ng ml-1 and in workers at 100 ng ml-1. Furthermore, environmentally realistic concentrations (4.5-40 ng ml-1) did not significantly affect survival or consumption for either sex. However, thiamethoxam exposure significantly negatively affected both sperm viability and HPG development at all tested concentrations. Therefore, the results indicate a trade-off between survival and fitness components, possibly due to costly detoxification. Since sperm and HPG are corner stones of colony fitness, the data offer plausible mechanisms for bumblebee population declines. To adequately mitigate ongoing biodiversity declines for the eusocial insects, this study suggests it is essential to evaluate the impact of insecticides on fitness parameters of both sexuals and workers.


Assuntos
Inseticidas , Animais , Abelhas , Feminino , Humanos , Insetos , Inseticidas/toxicidade , Masculino , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Reprodução , Espermatozoides , Tiametoxam
6.
Insects ; 11(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233695

RESUMO

The ubiquitous use of pesticides is one major driver for the current loss of biodiversity, and the common practice of simultaneously applying multiple agrochemicals may further contribute. Insect toxicology currently has a strong focus on survival to determine the potential hazards of a chemical routinely used in risk evaluations. However, studies revealing no effect on survival or even indicating enhanced survival are likely to be misleading, if potential trade-offs between survival and other physiological factors are overlooked. Here, we used standard laboratory experiments to investigate the sublethal (i.e., food consumption) and lethal (i.e., survival) effects of two common agricultural pesticides (Roundup® and clothianidin) on adult female solitary bees, Osmia bicornis. The data showed no significant effect of the treatment on cumulative survival; however, a significant positive correlation between herbicide and insecticide exposure and age was revealed, i.e., bees exposed to higher dosages lived longer. As no significant differences in daily food consumption were observed across treatment groups, increased food intake can be excluded as a factor leading to the prolonged survival. While this study does not provide data on fitness effects, two previous studies using solitary bees observed significant negative effects of neonicotinoid insecticides on fitness, yet not on survival. Thus, we conjecture that the observed non-significant effects on longevity may result from a trade-off between survival and reproduction. The data suggest that a focus on survival can lead to false-negative results and it appears inevitable to include fitness or at least tokens of fitness at the earliest stage in future risk assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA