Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microb Genom ; 10(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093316

RESUMO

Changing climates are allowing the geographic expansion of ticks and their animal hosts, increasing the risk of Borrelia-caused zoonoses in Canada. However, little is known about the genomic diversity of Borrelia from the west of the Canadian Rockies and from the tick vectors Ixodes pacificus, Ixodes auritulus and Ixodes angustus. Here, we report the whole-genome shotgun sequences of 51 Borrelia isolates from multiple tick species collected on a range of animal hosts between 1993 and 2016, located primarily in coastal British Columbia. The bacterial isolates represented three different species from the Lyme disease-causing Borrelia burgdorferi sensu lato genospecies complex [Borrelia burgdorferi sensu stricto (n=47), Borrelia americana (n=3) and Borrelia bissettiae (n=1)]. The traditional eight-gene multi-locus sequence typing (MLST) strategy was applied to facilitate comparisons across studies. This identified 13 known Borrelia sequence types (STs), established 6 new STs, and assigned 5 novel types to the nearest sequence types. B. burgdorferi s. s. isolates were further differentiated into ten ospC types, plus one novel ospC with less than 92 % nucleotide identity to all previously defined ospC types. The MLST types resampled over extended time periods belonged to previously described STs that are distributed across North America. The most geographically widespread ST, ST.12, was isolated from all three tick species. Conversely, new B. burgdorferi s. s. STs from Vancouver Island and the Vancouver region were only detected for short periods, revealing a surprising transience in space, time and host tick species, possibly due to displacement by longer-lived genotypes that expanded across North America.This article contains data hosted by Microreact.


Assuntos
Borrelia , Genótipo , Ixodes , Doença de Lyme , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma , Animais , Sequenciamento Completo do Genoma/métodos , Borrelia/genética , Borrelia/classificação , Borrelia/isolamento & purificação , Canadá , Ixodes/microbiologia , Doença de Lyme/microbiologia , Colúmbia Britânica , Genoma Bacteriano , Carrapatos/microbiologia
3.
Microbiol Resour Announc ; 13(2): e0087923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179914

RESUMO

Whole-genome sequences are presented for three Borrelia burgdorferi, a causative agent of Lyme disease in North America, isolated from Ixodes pacificus ticks collected in British Columbia, Canada. Shotgun DNA libraries were prepared with Illumina DNA Prep and sequenced using the MiniSeq platform. Genome assemblies enabled multilocus sequence typing and ospC typing.

4.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38031909

RESUMO

Horizontal gene transfer by plasmids can confer metabolic capabilities that expand a host cell's niche. Yet, it is less understood whether the coalescence of specialized catabolic functions, antibiotic resistances and metal resistances on plasmids provides synergistic benefits. In this study, we report whole-genome assembly and phenotypic analysis of five Salmonella enterica strains isolated in the 1980s from milk powder in Munich, Germany. All strains exhibited the unusual phenotype of lactose-fermentation and encoded either of two variants of the lac operon. Surprisingly, all strains encoded the mobilized colistin resistance gene 9 (mcr-9), long before the first report of this gene in the literature. In two cases, the mcr-9 gene and the lac locus were linked within a large gene island that formed an IncHI2A-type plasmid in one strain but was chromosomally integrated in the other strain. In two other strains, the mcr-9 gene was found on a large IncHI1B/IncP-type plasmid, whereas the lac locus was encoded on a separate chromosomally integrated plasmidic island. The mcr-9 sequences were identical and genomic contexts could not explain the wide range of colistin resistances exhibited by the Salmonella strains. Nucleotide variants did explain phenotypic differences in motility and exopolysaccharide production. The observed linkage of mcr-9 to lactose metabolism, an array of heavy-metal detoxification systems, and other antibiotic resistance genes may reflect a coalescence of specialized phenotypes that improve the spread of colistin resistance in dairy facilities, much earlier than previously suspected.


Assuntos
Colistina , Salmonella enterica , Colistina/farmacologia , Salmonella enterica/genética , Lactose , Sorogrupo , Farmacorresistência Bacteriana/genética , Plasmídeos/genética
5.
PLoS Pathog ; 19(8): e1011572, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607182

RESUMO

Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Camundongos , Camundongos Endogâmicos C3H , Larva
6.
J Clin Microbiol ; 61(7): e0042823, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37347171

RESUMO

Macrolides are a mainstay of therapy for infections due to nontuberculous mycobacteria (NTM). Among rapidly growing mycobacteria (RGM), inducible macrolide resistance is associated with four chromosomal 23S rRNA methylase (erm) genes. Beginning in 2018, we detected high-level inducible clarithromycin resistance (MICs of ≥16µg/mL) in clinical isolates of Mycobacterium chelonae, an RGM species not previously known to contain erm genes. Using whole-genome sequencing, we identified a novel plasmid-mediated erm gene. This gene, designated erm(55)P, exhibits <65% amino acid identity to previously described RGM erm genes. Two additional chromosomal erm(55) alleles, with sequence identities of 81% to 86% to erm(55)P, were also identified and designated erm(55)C and erm(55)T. The erm(55)T is part of a transposon. The erm(55)P allele variant is located on a putative 137-kb conjugative plasmid, pMchErm55. Evaluation of 133 consecutive isolates from 2020 to 2022 revealed 5 (3.8%) with erm(55). The erm(55)P gene was also identified in public data sets of two emerging pathogenic pigmented RGM species: Mycobacterium iranicum and Mycobacterium obuense, dating back to 2008. In both species, the gene appeared to be present on plasmids homologous to pMchErm55. Plasmid-mediated macrolide resistance, not described previously for any NTM species, appears to have spread to multiple RGM species. This has important implications for antimicrobial susceptibility guidelines and treatment of RGM infections. Further spread could present serious consequences for treatment of other macrolide-susceptible RGM. Additional studies are needed to determine the transmissibility of pMchErm55 and the distribution of erm(55) among other RGM species.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium chelonae , Mycobacterium , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos/farmacologia , Mycobacterium chelonae/genética , Farmacorresistência Bacteriana/genética , Claritromicina/uso terapêutico , Micobactérias não Tuberculosas , Mycobacterium/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia
7.
Pathogens ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678448

RESUMO

Tenacibaculum is a genus of Gram-negative filamentous bacteria with a cosmopolitan distribution. The research describing Tenacibaculum genomes stems primarily from Norway and Chile due to their impacts on salmon aquaculture. Canadian salmon aquaculture also experiences mortality events related to the presence of Tenacibaculum spp., yet no Canadian Tenacibaculum genomes are publicly available. Ribosomal DNA sequencing of 16S and four species-specific 16S quantitative-PCR assays were used to select isolates cultured from Atlantic salmon with mouthrot in British Columbia (BC), Canada. Ten isolates representing four known and two unknown species of Tenacibaculum were selected for shotgun whole genome sequencing using the Oxford Nanopore's MinION platform. The genome assemblies achieved closed circular chromosomes for seven isolates and long contigs for the remaining three isolates. Average nucleotide identity analysis identified T. ovolyticum, T. maritimum, T. dicentrarchi, two genomovars of T. finnmarkense, and two proposed novel species T. pacificus sp. nov. type strain 18-2881-AT and T. retecalamus sp. nov. type strain 18-3228-7BT. Annotation in most of the isolates predicted putative virulence and antimicrobial resistance genes, most-notably toxins (i.e., hemolysins), type-IX secretion systems, and oxytetracycline resistance. Comparative analysis with the T. maritimum type-strain predicted additional toxins and numerous C-terminal secretion proteins, including an M12B family metalloprotease in the T. maritimum isolates from BC. The genomic prediction of virulence-associated genes provides important targets for studies of mouthrot disease, and the annotation of the antimicrobial resistance genes provides targets for surveillance and diagnosis in veterinary medicine.

8.
Microbiol Resour Announc ; 12(1): e0052122, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472427

RESUMO

Ignavigranum ruoffiae is a rare human pathogen. Strain CPL 242382-20 was isolated in Manitoba, Canada, from a breast cyst. Whole-genome sequencing was performed with the Oxford Nanopore Technologies MinION and Illumina MiSeq platforms. The circular chromosome is 1,949,382 bp with 39.68% G+C content and 1,765 protein-coding genes.

9.
Elife ; 112022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346652

RESUMO

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Assuntos
COVID-19 , Quirópteros , Animais , Filogenia , Variação Genética , Análise de Sequência de DNA , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Genômica
10.
Microb Genom ; 8(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36107145

RESUMO

Delftia is a diverse betaproteobacterial genus with many strains having agricultural and industrial relevance, including plant-growth promotion, bioremediation of hydrocarbon-contaminated soils, and heavy metal immobilization. Delftia spp. are broadly distributed in the environment, and have been isolated from plant hosts as well as healthy and diseased animal hosts, yet the genetic basis of this ecological versatility has not been characterized. Here, we present a phylogenomic comparison of published Delftia genomes and show that the genus is divided into two well-supported clades: one 'Delftia acidovorans' clade with isolates from soils and plant rhizospheres, and a second 'Delftia lacustris and Delftia tsuruhatensis' clade with isolates from humans and sludge. The pan-genome inferred from 61 Delftia genomes contained over 28 000 genes, of which only 884 were found in all genomes. Analysis of industrially relevant functions highlighted the ecological versatility of Delftia and supported their role as generalists.


Assuntos
Delftia , Metais Pesados , Animais , DNA Bacteriano/genética , Delftia/genética , Humanos , Filogenia , Análise de Sequência de DNA , Esgotos , Solo
11.
Can J Microbiol ; 68(10): 615-621, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921682

RESUMO

Salmonella enterica and Escherichia coli use the inner membrane transporter DctA to import the pyrimidine biosynthetic pathway intermediate orotate from the environment. To study the regulation of dctA expression, we used an S. enterica serovar Typhimurium pyrimidine auxotroph to select a mutant that could grow in an otherwise nonpermissive culture medium containing glucose and a low concentration of orotate. Whole genome sequencing revealed a point mutation upstream of dctA in the putative cyclic AMP receptor protein (CRP) binding site. The C→T transition converted the least favourable base to the most favourable base for CRP-DNA affinity. A dctA::lux transcriptional fusion confirmed that the mutant dctA promoter gained responsiveness to CRP even in the presence of glucose. Moreover, dctA expression was higher in the mutant than the wild type in the presence of alternative carbon sources that activate CRP.


Assuntos
Proteínas de Escherichia coli , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carbono/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Pirimidinas/metabolismo , Salmonella typhimurium/genética , Sorogrupo
12.
Nucleic Acids Res ; 50(2): 975-988, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34904658

RESUMO

Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Mesorhizobium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Ilhas Genômicas , Mesorhizobium/genética , Mesorhizobium/metabolismo , Percepção de Quorum , Simbiose/genética
13.
Microbiol Resour Announc ; 10(40): e0061121, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617784

RESUMO

We report the draft genome sequence of Acinetobacter soli AS15, which was isolated in 2018 from a rectal screen of a patient at St. Vincent's University Hospital (Dublin, Ireland). The draft genome sequence is 3,589,002 bp and was assembled into 82 contigs.

14.
Methods Mol Biol ; 2381: 217-223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590279

RESUMO

Advances in molecular genetics through high-throughput gene mutagenesis and genetic crossing have enabled gene interaction mapping across whole genomes. Detecting gene interactions in even small microbial genomes relies on measuring growth phenotypes in thousands of crossed strains followed by statistical analysis to compare single and double mutants. The preferred computational approach is to use a multiplicative model that factors phenotype scores of single gene mutants to identify gene interactions in double mutants. Here we present how machine learning models that consider the characteristics of the phenotypic data improve on the classical multiplicative model. Importantly, machine learning improves the selection of cutoff values to identify gene interactions from phenotypic scores.


Assuntos
Epistasia Genética , Aprendizado de Máquina , Mapeamento Cromossômico , Genoma , Fenótipo
15.
Biodegradation ; 31(4-6): 407-422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33150552

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon-nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Betaína , Biodegradação Ambiental , Fluorocarbonos/análise , Enxofre , Transcriptoma/genética , Poluentes Químicos da Água/análise
16.
Nucleic Acids Res ; 48(18): 10184-10198, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32894292

RESUMO

H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Enterobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Filogenia , Proteômica
17.
Microorganisms ; 8(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316180

RESUMO

Salmonella Pathogenicity Island 1 (SPI-1) encodes a type three secretion system (T3SS), effector proteins, and associated transcription factors that together enable invasion of epithelial cells in animal intestines. The horizontal acquisition of SPI-1 by the common ancestor of all Salmonella is considered a prime example of how gene islands potentiate the emergence of new pathogens with expanded niche ranges. However, the evolutionary history of SPI-1 has attracted little attention. Here, we apply phylogenetic comparisons across the family Enterobacteriaceae to examine the history of SPI-1, improving the resolution of its boundaries and unique architecture by identifying its composite gene modules. SPI-1 is located between the core genes fhlA and mutS, a hotspot for the gain and loss of horizontally acquired genes. Despite the plasticity of this locus, SPI-1 demonstrates stable residency of many tens of millions of years in a host genome, unlike short-lived homologous T3SS and effector islands including Escherichia ETT2, Yersinia YSA, Pantoea PSI-2, Sodalis SSR2, and Chromobacterium CPI-1. SPI-1 employs a unique series of regulatory switches, starting with the dedicated transcription factors HilC and HilD, and flowing through the central SPI-1 regulator HilA. HilA is shared with other T3SS, but HilC and HilD may have their evolutionary origins in Salmonella. The hilA, hilC, and hilD gene promoters are the most AT-rich DNA in SPI-1, placing them under tight control by the transcriptional repressor H-NS. In all Salmonella lineages, these three promoters resist amelioration towards the genomic average, ensuring strong repression by H-NS. Hence, early development of a robust and well-integrated regulatory network may explain the evolutionary stability of SPI-1 compared to T3SS gene islands in other species.

18.
Microb Biotechnol ; 12(6): 1199-1209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30927344

RESUMO

Cultivation of dedicated soil plots called 'landfarms' is an effective technology for bioremediation of hydrocarbon waste generated by various industrial practices. To understand the influence of soil conditions on landfarm microbial communities, analysis of bacterial and fungal community structure using next-generation sequencing at different sections and depths was performed across a hydrocarbon-waste landfarm in Regina, Saskatchewan, Canada. While a core set of hydrocarbon-associated bacterial and fungal taxa are present throughout the landfarm, unique bacterial and fungal operational taxonomic units are differentially abundant at sections within the landfarm, which correlate with differences in soil physiochemical properties and management practices. Increased frequency of waste application resulted in strong positive correlations between bacterial community assemblages and elevated amounts of oil, grease and F3 - F4 hydrocarbon fractions. In areas of standing water and lower application of hydrocarbon, microbial community structure correlated with soil pH, trace nutrients and metals. Overall, diversity and structure of bacterial communities remain relatively stable across the landfarm, while in contrast, fungal community structure appears more responsive to soil oxygen conditions. Results are consistent with the hypothesis that years of bioremediation activity have shaped microbial communities; however, several management practices can be undertaken to increase efficiency of remediation, including the removal of standing water and soil tilling across the landfarm.


Assuntos
Bactérias/classificação , Biodegradação Ambiental , Fungos/classificação , Hidrocarbonetos/metabolismo , Microbiota , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biotransformação , Fungos/genética , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Saskatchewan , Solo/química , Análise Espacial
19.
Emerg Infect Dis ; 25(3): 473-481, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789130

RESUMO

Attention to environmental sources of Mycobacterium avium complex (MAC) infection is a vital component of disease prevention and control. We investigated MAC colonization of household plumbing in suburban Philadelphia, Pennsylvania, USA. We used variable-number tandem-repeat genotyping and whole-genome sequencing with core genome single-nucleotide variant analysis to compare M. avium from household plumbing biofilms with M. avium isolates from patient respiratory specimens. M. avium was recovered from 30 (81.1%) of 37 households, including 19 (90.5%) of 21 M. avium patient households. For 11 (52.4%) of 21 patients with M. avium disease, isolates recovered from their respiratory and household samples were of the same genotype. Within the same community, 18 (85.7%) of 21 M. avium respiratory isolates genotypically matched household plumbing isolates. Six predominant genotypes were recovered across multiple households and respiratory specimens. M. avium colonizing municipal water and household plumbing may be a substantial source of MAC pulmonary infection.


Assuntos
Microbiologia Ambiental , Infecção por Mycobacterium avium-intracellulare/epidemiologia , Infecção por Mycobacterium avium-intracellulare/microbiologia , Mycobacterium avium/classificação , Microbiologia da Água , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , História do Século XXI , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Tipagem de Sequências Multilocus , Mycobacterium avium/genética , Mycobacterium avium/isolamento & purificação , Complexo Mycobacterium avium/classificação , Complexo Mycobacterium avium/genética , Complexo Mycobacterium avium/isolamento & purificação , Infecção por Mycobacterium avium-intracellulare/história , Philadelphia/epidemiologia , Filogenia , Vigilância em Saúde Pública , Sequenciamento Completo do Genoma
20.
Can J Microbiol ; 65(1): 34-44, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30248271

RESUMO

A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.


Assuntos
Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal , Conjugação Genética , Humanos , Plasmídeos , Transdução Genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA