Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Drug Metab Dispos ; 46(12): 1836-1846, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30194276

RESUMO

6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577) is a direct activator of the human ß1-containing adenosine monophosphate-activated protein kinase (ΑMPK) isoforms. The clearance mechanism of PF-06409577 in animals and humans involves uridine diphosphoglucuronosyl transferase (UGT)-mediated glucuronidation to an acyl glucuronide metabolite of PF-06409577 [(2S,3S,4S,5R,6S)-6-((6-chloro-5-(4-(1-hydroxycyclobutyl)phenyl)-1H-indole-3-carbonyl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (M1)], which retains selective activation of human ß1-containing AMPK isoforms. This paper describes a detailed characterization of the human UGT isoform(s) responsible for glucuronidation of PF-06409577 to M1. Studies using a panel of 13 human recombinant UGT (hrUGT) enzymes indicated that PF-06409577 was converted to M1 in a highly selective fashion by UGT1A1, which was further verified in human liver microsomes treated with specific chemical inhibitors, and in different UGT1A1 expressers. Conversion of PF-06409577 to M1 by UGT1A1 occurred in a relatively selective fashion, compared with ß-estradiol (ES), a conventional probe substrate of UGT1A1. The Michaelis-Menten constant (K M) and V max values describing the formation of M1 from PF-06409577 in hrUGT1A1 and microsomal preparations from human intestine, liver, and kidney ranged from 131 to 212 µM (K M) and 107-3834 pmol/min per milligram (V max) in the presence of 2% bovine serum albumin. Relative activity factors (RAF) were determined for UGT1A1 using PF-06409577 and ES to enable estimation of intrinsic clearance from various tissues. RAF values from PF-06409577 and ES were generally comparable with the exception of intestinal microsomes, where ES overestimated the RAF of UGT1A1 due to glucuronidation by intestinal UGT1A8 and UGT1A10. Our results suggest the potential utility of PF-06409477 as a selective probe UGT1A1 substrate for UGT reaction phenotyping and inhibition studies in preclinical discovery/development.


Assuntos
Estradiol/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Indóis/metabolismo , Microssomos/metabolismo , Feminino , Humanos , Técnicas In Vitro , Inativação Metabólica , Mucosa Intestinal/metabolismo , Rim/metabolismo , Cinética , Fígado/metabolismo , Masculino , Isoformas de Proteínas , Especificidade por Substrato
2.
J Med Chem ; 61(16): 7273-7288, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30036059

RESUMO

Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1ß1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of ß1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1ß1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Indóis/química , Indóis/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/química , Animais , Células Cultivadas , Cristalização/métodos , Ativação Enzimática/efeitos dos fármacos , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronídeos/farmacocinética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Indóis/farmacologia , Macaca fascicularis , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos Wistar , Uridina Difosfato Ácido Glucurônico/farmacologia
3.
EBioMedicine ; 31: 122-132, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29673898

RESUMO

Dysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK ß1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis. These effects require AMPK activity in the hepatocytes. Treatment of hyperlipidemic rats or cynomolgus monkeys with PF-06409577 for 6weeks resulted in a reduction in circulating cholesterol. Together these data suggest that activation of AMPK ß1 complexes with PF-06409577 is capable of impacting multiple facets of liver disease and represents a promising strategy for the treatment of NAFLD and NASH in humans.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/farmacologia , Hepatócitos/enzimologia , Indóis/farmacologia , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica , Animais , Linhagem Celular , Haplorrinos , Hepatócitos/patologia , Humanos , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos
4.
J Med Chem ; 61(6): 2372-2383, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29466005

RESUMO

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Ativadores de Enzimas/síntese química , Ativadores de Enzimas/farmacologia , Indóis/síntese química , Indóis/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/farmacocinética , Humanos , Indóis/farmacocinética , Absorção Intestinal , Rim/efeitos dos fármacos , Rim/enzimologia , Masculino , Modelos Moleculares , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade
5.
Cell Metab ; 25(5): 1147-1159.e10, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467931

RESUMO

The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK ß1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopiridinas/farmacologia , Ativadores de Enzimas/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Indóis/farmacologia , Aminopiridinas/uso terapêutico , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/uso terapêutico , Feminino , Hipoglicemiantes/uso terapêutico , Indóis/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
6.
J Pharmacol Exp Ther ; 361(2): 303-311, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289077

RESUMO

Diabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the ß1 subunit. After confirming that human and rodent kidney predominately express AMPK ß1, we explore the effects of pharmacological activation of AMPK in the ZSF1 rat model of diabetic nephropathy. Chronic administration of these direct activators elevates the phosphorylation of AMPK in the kidney, without impacting blood glucose levels, and reduces the progression of proteinuria to a greater degree than the current standard of care, angiotensin-converting enzyme inhibitor ramipril. Further analyses of urine biomarkers and kidney tissue gene expression reveal AMPK activation leads to the modulation of multiple pathways implicated in kidney injury, including cellular hypertrophy, fibrosis, and oxidative stress. These results support the need for further investigation into the potential beneficial effects of AMPK activation in kidney disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopiridinas/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Indóis/farmacologia , Rim/efeitos dos fármacos , Aminopiridinas/uso terapêutico , Animais , Tamanho Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ativação Enzimática , Fibrose , Humanos , Indóis/uso terapêutico , Isoenzimas/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Macaca fascicularis , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosforilação , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Ratos , Especificidade da Espécie
7.
Bioorg Med Chem Lett ; 26(21): 5139-5148, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27727125

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK), a serine/threonine heterotrimeric protein kinase, is a critical regulator of cellular and whole body energy homeostasis. There are twelve known AMPK isoforms that are differentially expressed in tissues and species. Dysregulation of AMPK signaling is associated with a multitude of human pathologies. Hence isoform-selective activators of AMPK are actively being sought for the treatment of cardiovascular and metabolic diseases. The present review summarizes the status of direct AMPK activators from the patent and published literature.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/farmacologia , Proteínas Quinases Ativadas por AMP/química , Animais , Ativação Enzimática , Humanos , Fosforilação , Conformação Proteica
8.
J Med Chem ; 59(17): 8068-81, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27490827

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Ativadores de Enzimas/química , Indóis/química , Administração Oral , Adsorção , Animais , Cristalografia por Raios X , Cães , Ativadores de Enzimas/síntese química , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Indóis/síntese química , Indóis/farmacocinética , Indóis/farmacologia , Injeções Intravenosas , Macaca fascicularis , Masculino , Modelos Moleculares , Conformação Proteica , Ratos
9.
ACS Med Chem Lett ; 6(2): 156-61, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25699143

RESUMO

Several polar heteroaromatic acetic acids and their piperidine amides were synthesized and evaluated as ghrelin or type 1a growth hormone secretagogue receptor (GHS-R1a) inverse agonists. Efforts to improve pharmacokinetic and safety profile was achieved by modulating physicochemical properties and, more specifically, emphasizing increased polarity of our chemical series. ortho-Carboxamide containing compounds provided optimal physicochemical, pharmacologic, and safety profile. pH-dependent chemical stability was also assessed with our series.

10.
Structure ; 22(8): 1161-1172, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25066137

RESUMO

AMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet clinical therapies remain elusive. Challenges result, in part, from an incomplete understanding of the structure and function of full-length heterotrimeric complexes. In this work, we provide the full-length structure of the widely expressed α1ß1γ1 isoform of mammalian AMPK, along with detailed kinetic and biophysical characterization. We characterize binding of the broadly studied synthetic activator A769662 and its analogs. Our studies follow on the heels of the recent disclosure of the α2ß1γ1 structure and provide insight into the distinct molecular mechanisms of AMPK regulation by AMP and A769662.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/fisiologia , Ativação Enzimática/fisiologia , Modelos Moleculares , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Sítio Alostérico/genética , Compostos de Bifenilo , Sistemas de Liberação de Medicamentos , Humanos , Cinética , Ligantes , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Pironas/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Tiofenos/metabolismo
11.
J Med Chem ; 57(21): 8671-91, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25036503

RESUMO

Ghrelin is an endogenous peptide hormone secreted primarily by the stomach and is involved in a number of physiological processes including growth hormone secretion, food intake, as well as energy and glucose homeostasis. The physiological actions of ghrelin are mediated through the growth hormone secretagogue receptor 1a (ghrelin receptor), a peptidic G-protein-coupled receptor. This target has attracted much interest, as agents that block ghrelin's actions on its receptor are anticipated to be pharmaceutical interventions for a number of diseases. This review provides an overview of ghrelin biology with a focus on metabolic diseases and summarizes recent medicinal chemistry programs aimed at delivering small molecule ghrelin receptor antagonists and inverse agonists to the clinic.


Assuntos
Receptores de Grelina/antagonistas & inibidores , Aciltransferases/genética , Animais , Indústria Farmacêutica , Ingestão de Alimentos/efeitos dos fármacos , Grelina/genética , Grelina/farmacologia , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Obesidade/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Pâncreas/fisiologia , Ratos , Receptores de Grelina/agonistas , Receptores de Grelina/genética
12.
ACS Med Chem Lett ; 5(5): 474-9, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900864

RESUMO

The identification of potent, highly selective orally bioavailable ghrelin receptor inverse agonists from a spiro-azetidino-piperidine series is described. Examples from this series have promising in vivo pharmacokinetics and increase glucose-stimulated insulin secretion in human whole and dispersed islets. A physicochemistry-based strategy to increase lipophilic efficiency for ghrelin receptor potency and retain low clearance and satisfactory permeability while reducing off-target pharmacology led to the discovery of 16h. Compound 16h has a superior balance of ghrelin receptor pharmacology and off-target selectivity. On the basis of its promising pharmacological and safety profile, 16h was advanced to human clinical trials.

13.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953189

RESUMO

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Receptores de Grelina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Agonismo Inverso de Drogas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Indanos/química , Indanos/farmacologia , Concentração Inibidora 50 , Isomerismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
14.
Curr Top Med Chem ; 13(7): 776-802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23578023

RESUMO

Targeting drugs to the gastrointestinal tract has been and continues to be an active area of research. Gut-targeting is an effective means of increasing the local concentration of active substance at the desired site of action while minimizing concentrations elsewhere in the body that could lead to unwanted side-effects. Several approaches to intestinal targeting exist. Physicochemical property manipulation can drive molecules to large, polar, low absorption space or alternatively to lipophilic, high clearance space in order to minimize systemic exposure. Design of compounds that are substrates for transporters within the gastrointestinal tract, either uptake or efflux, or at the hepato-biliary interface, may help to increase intestinal concentration. Prodrug strategies have been shown to be effective particularly for colon targeting, and several different technology formulation approaches are currently being researched. This review provides examples of various approaches to intestinal targeting, and discusses challenges and areas in need of future scientific advances.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Trato Gastrointestinal/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Humanos , Preparações Farmacêuticas/administração & dosagem
15.
Curr Top Med Chem ; 13(7): 857-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23578029

RESUMO

The tissue distribution of a drug can have significant impact on both its efficacy and safety. As a consequence, selective tissue targeting has become an attractive approach for optimizing the window between efficacy and safety for drug targets that are ubiquitously expressed and important in key physiological processes. Given the liver's key role in metabolic regulation and the fact that it is the principal tissue affected by diseases such as hepatitis B and C viruses as well as hepatocellular carcinoma, designing drugs with hepatoselective distribution profiles is an important strategy in developing safe cardiovascular, metabolic, antiviral and oncology drug candidates. In this paper, we analyze a diverse set of compounds from four different projects within Pfizer that specifically pursued liver targeting strategies. A number of key in vitro and in vivo ADME endpoints were collected including in vivo tissue exposure, oral bioavailability, clearance in preclinical species and in vitro hepatic OATP uptake, in vitro rat liver microsomal stability, permeability, solubility, logD, and others. From this analysis, we determined a set of general structure-liver-selectivity guides for designing orally bioavailable, liver-targeted candidates using liver specific OATP transporters. The guidelines have been formulated using straightforward molecular descriptors and in vitro properties that medicinal chemists routinely optimize. Our analysis emphasizes the need to focus on a chemical space with balanced lipophilicity, high aqueous solubility and low passive permeability in order to achieve the desired hepatoselectivity while maintaining fraction absorbed.


Assuntos
Desenho de Fármacos , Fígado/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Animais , Química Farmacêutica , Humanos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/síntese química , Solubilidade , Distribuição Tecidual
16.
ACS Med Chem Lett ; 4(11): 1079-84, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900608

RESUMO

Orphan G protein-coupled receptors (oGPCRs) are a class of integral membrane proteins for which endogenous ligands or transmitters have not yet been discovered. Transgenic animal technologies have uncovered potential roles for many of these oGPCRs, providing new targets for the treatment of various diseases. Understanding signaling pathways of oGPCRs and validating these receptors as potential drug targets requires the identification of chemical probe compounds to be used in place of endogenous ligands to interrogate these receptors. A novel chemical probe identification platform was created in which GPCR-focused libraries were screened against sets of oGPCR targets, with a goal of discovering fit-for-purpose chemical probes for the more druggable members of the set. Application of the platform to a set of oGPCRs resulted in the discovery of the first reported small molecule agonists for GPR39, a receptor implicated in the regulation of insulin secretion and preservation of beta cells in the pancreas. Compound 1 stimulated intracellular calcium mobilization in recombinant and native cells in a GPR39-specific manner but did not potentiate glucose-stimulated insulin secretion in human islet preparations.

17.
Bioorg Med Chem Lett ; 22(8): 2943-7, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22424974

RESUMO

New cholecystokinin-1 receptor (CCK1R) agonist 'triggers' were identified using iterative library synthesis. Structural activity relationship studies led to the discovery of compound 10e, a potent CCK1R agonist that demonstrated robust weight loss in a diet-induced obese rat model with very low systemic exposure. Pharmacokinetic data suggest that efficacy is primarily driven through activation of CCK1R's located within the intestinal wall.


Assuntos
Amidas/síntese química , Descoberta de Drogas , Piperidinas/síntese química , Receptor de Colecistocinina A/agonistas , Amidas/química , Amidas/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Obesos , Piperidinas/química , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Redução de Peso/efeitos dos fármacos
19.
Bioorg Med Chem Lett ; 19(7): 2075-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19250823

RESUMO

Sulfonamides, exemplified by 3a, were identified as highly selective EP(2) agonists. Lead optimization led to the identification of CP-533536, 7f, a potent and selective EP(2) agonist. CP-533536 demonstrated the ability to heal fractures when administered locally as a single dose in rat models of fracture healing.


Assuntos
Osteogênese/efeitos dos fármacos , Piridinas/química , Receptores de Prostaglandina E/agonistas , Animais , Masculino , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP2 , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
20.
J Bone Miner Res ; 21(4): 565-75, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16598377

RESUMO

UNLABELLED: CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia. INTRODUCTION: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia. MATERIALS AND METHODS: CP432 at 0.3, 1, or 3 mg/kg/day was given for 6 weeks by subcutaneous injection to 12-month-old rats that had been OVX for 8.5 months. The effects on bone mass, bone formation, bone resorption, and bone strength were determined. RESULTS: Total femoral BMD increased significantly in OVX rats treated with CP432 at all doses. CP432 completely restored trabecular bone volume of the third lumbar vertebral body accompanied with a dose-dependent decrease in osteoclast number and osteoclast surface and a dose-dependent increase in mineralizing surface, mineral apposition rate, and bone formation rate-tissue reference in OVX rats. CP432 at 1 and 3 mg/kg/day significantly increased total tissue area, cortical bone area, and periosteal and endocortical bone formation in the tibial shafts compared with both sham and OVX controls. CP432 at all doses significantly and dose-dependently increased ultimate strength in the fifth lumber vertebral body compared with both sham and OVX controls. At 1 and 3 mg/kg/day, CP432 significantly increased maximal load in a three-point bending test of femoral shaft compared with both sham and OVX controls. CONCLUSIONS: CP432 completely restored trabecular and cortical bone mass and strength in established osteopenic, aged OVX rats by stimulating bone formation and inhibiting bone resorption on trabecular and cortical surfaces.


Assuntos
Envelhecimento/fisiologia , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/tratamento farmacológico , Dinoprostona/agonistas , Osteogênese/efeitos dos fármacos , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/metabolismo , Animais , Peso Corporal , Densidade Óssea/fisiologia , Modelos Animais de Doenças , Feminino , Fêmur/anatomia & histologia , Vértebras Lombares/anatomia & histologia , Estrutura Molecular , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP4 , Especificidade por Substrato , Tíbia/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA