Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Stud Health Technol Inform ; 309: 177-178, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37869835

RESUMO

Phlebopathic diseases are chronic conditions that impact the health status and affect functional capacity. We developed SISTINE 3.0, a wearable system for remote monitoring of patients, and the aim of the study is to evaluate whether it can detect differences between participants with phlebology and healthy ones. Twelve patients and five healthy subjects performed a 3-metres Timed-Up-Go wearing SISTINE 3.0 system. The results support the system's potential to discriminate participants, especially based on the linear walking and turning angular velocity.


Assuntos
Caminhada , Dispositivos Eletrônicos Vestíveis , Humanos , Nível de Saúde , Voluntários Saudáveis
3.
Bioengineering (Basel) ; 10(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37237616

RESUMO

The length of the standing long jump (SLJ) is widely recognized as an indicator of developmental motor competence or sports conditional performance. This work aims at defining a methodology to allow athletes/coaches to easily measure it using the inertial measurement units embedded on a smartphone. A sample group of 114 trained young participants was recruited and asked to perform the instrumented SLJ task. A set of features was identified based on biomechanical knowledge, then Lasso regression allowed the identification of a subset of predictors of the SLJ length that was used as input of different optimized machine learning architectures. Results obtained from the use of the proposed configuration allow an estimate of the SLJ length with a Gaussian Process Regression model with a RMSE of 0.122 m in the test phase, Kendall's τ < 0.1. The proposed models give homoscedastic results, meaning that the error of the models does not depend on the estimated quantity. This study proved the feasibility of using low-cost smartphone sensors to provide an automatic and objective estimate of SLJ performance in ecological settings.

4.
Healthcare (Basel) ; 11(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36981531

RESUMO

Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground, sometimes observed in children, that alters ankle kinematics, possibly leading to health-related issues. When studying foot and ankle gait deviations, the adoption of a single-segment foot model entails a significant simplification of foot and ankle movement, and thus may potentially mask some important foot dynamics. Differences in ankle kinematics between single- (conventional gait model, PiG, or Davis) and multi-segment (Oxford foot model, OFM) foot models were investigated in children with ITW. Fourteen participants were enrolled in the study and underwent instrumented gait analysis. Children were asked to walk barefoot and while wearing a foot orthosis that modified the ankle movement pattern toward a more physiological one without blocking foot intrinsic motion. ITW gait abnormalities, e.g., the absence of heel rocker and the presence of anticipated forefoot rocker, were found/not found according to the foot model. Walking conditions significantly interacted with the foot model effect. Finally, the different characterization of gait abnormalities led to a different classification of ITW, with a possible impact on the clinical evaluation. Due to its closer adhesion to ankle anatomy and to its sensitivity to ITW peculiarities, OFM may be preferable for instrumented gait analysis in this population.

5.
Micromachines (Basel) ; 14(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36837977

RESUMO

Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground and excessive ankle plantarflexion over the entire gait cycle observed in otherwise-typical developing children. The clinical evaluation of ITW is usually performed using optoelectronic systems analyzing the sagittal component of ankle kinematics and kinetics. However, in standardized laboratory contexts, these children can adopt a typical walking pattern instead of a toe walk, thus hindering the laboratory-based clinical evaluation. With these premises, measuring gait in a more ecological environment may be crucial in this population. As a first step towards adopting wearable clinical protocols embedding magneto-inertial sensors and pressure insoles, this study analyzed the performance of three algorithms for gait events identification based on shank and/or foot sensors. Foot strike and foot off were estimated from gait measurements taken from children with ITW walking barefoot and while wearing a foot orthosis. Although no single algorithm stands out as best from all perspectives, preferable algorithms were devised for event identification, temporal parameters estimate and heel and forefoot rocker identification, depending on the barefoot/shoed condition. Errors more often led to an erroneous characterization of the heel rocker, especially in shoed condition. The ITW gait specificity may cause errors in the identification of the foot strike which, in turn, influences the characterization of the heel rocker and, therefore, of the pathologic ITW behavior.

6.
Front Sports Act Living ; 5: 1112739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845828

RESUMO

Introduction: The peak height reached in a countermovement jump is a well established performance parameter. Its estimate is often entrusted to force platforms or body-worn inertial sensors. To date, smartphones may possibly be used as an alternative for estimating jump height, since they natively embed inertial sensors. Methods: For this purpose, 43 participants performed 4 countermovement jumps (172 in total) on two force platforms (gold standard). While jumping, participants held a smartphone in their hands, whose inertial sensor measures were recorded. After peak height was computed for both instrumentations, twenty-nine features were extracted, related to jump biomechanics and to signal time-frequency characteristics, as potential descriptors of soft tissues or involuntary arm swing artifacts. A training set (129 jumps - 75%) was created by randomly selecting elements from the initial dataset, the remaining ones being assigned to the test set (43 jumps - 25%). On the training set only, a Lasso regularization was applied to reduce the number of features, avoiding possible multicollinearity. A multi-layer perceptron with one hidden layer was trained for estimating the jump height from the reduced feature set. Hyperparameters optimization was performed on the multi-layer perceptron using a grid search approach with 5-fold cross validation. The best model was chosen according to the minimum negative mean absolute error. Results: The multi-layer perceptron greatly improved the accuracy (4 cm) and precision (4 cm) of the estimates on the test set with respect to the raw smartphone measures estimates (18 and 16 cm, respectively). Permutation feature importance was performed on the trained model in order to establish the influence that each feature had on the outcome. The peak acceleration and the braking phase duration resulted the most influential features in the final model. Despite not being accurate enough, the height computed through raw smartphone measures was still among the most influential features. Discussion: The study, implementing a smartphone-based method for jump height estimates, paves the way to method release to a broader audience, pursuing a democratization attempt.

7.
Hum Mov Sci ; 87: 103042, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493569

RESUMO

Recent advances in wearable sensing and machine learning have created ample opportunities for "in the wild" movement analysis in sports, since the combination of both enables real-time feedback to be provided to athletes and coaches, as well as long-term monitoring of movements. The potential for real-time feedback is useful for performance enhancement or technique analysis, and can be achieved by training efficient models and implementing them on dedicated hardware. Long-term monitoring of movement can be used for injury prevention, among others. Such applications are often enabled by training a machine learned model from large datasets that have been collected using wearable sensors. Therefore, in this perspective paper, we provide an overview of approaches for studies that aim to analyze sports movement "in the wild" using wearable sensors and machine learning. First, we discuss how a measurement protocol can be set up by answering six questions. Then, we discuss the benefits and pitfalls and provide recommendations for effective training of machine learning models from movement data, focusing on data pre-processing, feature calculation, and model selection and tuning. Finally, we highlight two application domains where "in the wild" data recording was combined with machine learning for injury prevention and technique analysis, respectively.


Assuntos
Movimento , Esportes , Humanos , Aprendizado de Máquina , Atletas
8.
Heliyon ; 8(10): e11021, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36281373

RESUMO

Background: Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground, possibly enhancing the risk of falling and causing Achilles' tendon shortening and psychological discomfort. Between possible treatments, foot orthosis may limit ITW when worn. With these premises, the effects of a novel foot orthosis (A.Dyn.O.®) on ankle function were analyzed in children with ITW during gait. Methods: Twenty-one children were recruited in the study after ITW diagnosis. At follow-up assessment after a habituation period of at least two weeks, participants walked in barefoot condition and while wearing A.Dyn.O.®. Kinetics and kinematics were derived from a multi-segment foot model using an optoelectronic system. Gait spatiotemporal parameters, ankle kinetic and kinematic and rockers timing were analyzed. Lastly, ITW severity was classified according to Alvarez classification. Differences between conditions were verified with paired t-test. Statistical parametric mapping was used to evaluate differences in the entire kinematic and kinetic waveforms. Findings: Wearing A.Dyn.O.®, step cadence was reduced, step length, stance phase and stride duration increased; physiological heel rocker was present, thus postponing the timing of ankle and forefoot rockers; ankle dorsiflexion angular excursion, range of motion, maximal dorsiflexor and plantarflexor moments together with maximal power absorption and production were all amplified. Interpretation: While wearing it, A.Dyn.O.® limited gait deviations typical of ITW and improved ITW severity classification for most of the participants. These findings suggest that the use of A.Dyn.O.® may assist ITW treatment, preventing children from toe walking and thus limiting its side effects.

9.
J Biomech ; 141: 111202, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751925

RESUMO

The ankle joint complex presents a tangled functional anatomy, which understanding is fundamental to effectively estimate its kinematics on the sagittal plane. Protocols based on the use of magnetic and inertial measurement units (MIMUs) currently do not take in due account this factor. To this aim, a joint coordinate system for the ankle joint complex is proposed, along with a protocol to perform its anatomical calibration using MIMUs, consisting in a combination of anatomical functional calibrations of the tibiotalar axis and static acquisitions. Protocol repeatability and reliability were tested according to the metrics proposed in Schwartz et al. (2004) involving three different operators performing the protocol three times on ten participants, undergoing instrumented gait analysis through both stereophotogrammetry and MIMUs. Instrumental reliability was evaluated comparing the MIMU-derived kinematic traces with the stereophotogrammetric ones, obtained with the same protocol, through the linear fit method. A total of 270 gait cycles were considered. Results showed that the protocol was repeatable and reliable for what concerned the operators (0.4 ± 0.4 deg and 0.8 ± 0.5 deg, respectively). Instrumental reliability analysis showed a mean RMSD of 3.0 ± 1.3 deg, a mean offset of 9.4 ± 8.4 deg and a mean linear relationship strength of R2 = 0.88 ± 0.08. With due caution, the protocol can be considered both repeatable and reliable. Further studies should pay attention to the other ankle degrees of freedom as well as on the angular convention to compute them.


Assuntos
Tornozelo , Marcha , Fenômenos Biomecânicos , Calibragem , Humanos , Fenômenos Magnéticos , Reprodutibilidade dos Testes
10.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590914

RESUMO

Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features-such as research design, scope, experimental settings, and applied context-were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field.


Assuntos
Doenças Musculoesqueléticas , Esportes , Dispositivos Eletrônicos Vestíveis , Humanos
11.
Front Sports Act Living ; 4: 853536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434619

RESUMO

Hammer throw is a discipline characterized by unique biomechanical features, which have often captured the interest of scientists and coaches in athletics. However, most studies have been published on technical journals for coaches and there are only few works on the biomechanical aspects of hammer throw in scientific literature. This narrative review provides a critical evaluation of the articles published in scientific and the most relevant technical journals with a particular focus on the biomechanical aspects that underlie the throwing technique and contribute to performance enhancement. The modern throwing technique has many elements in common with that used by the best throwers in the Eighties, underlying a limited development in the biomechanical understanding of throwing motion in recent years. This review analyses the ballistic and environmental aspects of the discipline as well as the motion of the center of mass of both the hammer and thrower. Furthermore, the orbital movement of the hammer and the forces involved in the throw are evaluated. This review emphasizes the kinematic and dynamic parameters that emerge as the most relevant to improve the throwing performance. Among these, linear release velocity appears to be a fundamental element. To maximize this variable, the athlete is required to accelerate the hammer by applying force. The curve of the time-tangential velocity of the hammer follows a trajectory very similar to that of the forces applied to the hammer-thrower system indicating a strong relationship between the two variables. The thrower uses the action of the leg muscles to gain momentum, which is then transferred to the hammer through the trunk and arm muscles, thus obtaining an increase of the linear release velocity. This review provides coaches with a critical analysis of the hammer throw technique, highlighting relevant factors for future development of training programmes. Our work reveals a substantial gap in the literature, particularly concerning the evaluation of fundamental key aspects of the throw such as the assessment of preliminary winds, the entry to the first turn and the definition of the rotation axes involved in the throw. A more in-depth analysis of these key elements is required to improve the understanding of the biomechanics of hammer throw.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35206339

RESUMO

In children, motor competence (MC) and the amount of physical activity are tightly interconnected. In adults with Down syndrome (DS), MC has been poorly addressed, resulting in a limited understanding of the possibility to improve MC over time. Here, we aim to: (1) investigate MC in adults with DS by comparing them with a group of typically developed peers and (2) verify the effect of an adapted karate program on MC. Adults with DS (DSG; n = 57) and typically developed adults (TDG; n = 21) performed the Test of Gross Motor Development version 3 (TGMD-3). The total TGMD-3 score (TOTTGMD-3), the locomotor (LOCTGMD-3), and object control (OBJTGMD-3) scores were computed. After a 40 week adapted karate program, DSG (n = 37) underwent the post-training TGMD-3 assessment. Compared to TDG, DSG showed lower TOTTGMD-3 (DSG: 45.5 ± 17.3; TDG: 77.3 ± 9.5), LOCTGMD-3 (DSG: 22.2 ± 10.0; TDG: 36.2 ± 7.6) and OBJTGMD-3 (DSG: 23.3 ± 10.9; TDG: 41.1 ± 5.6). After the training, TOTTGMD-3, LOCTGMD-3 and OBJTGMD-3 increased by 35.6%, 30.0% and 40.7%, respectively. Our results suggest that MC acquisition does not evolve into a mature form in adulthood in individuals with DS. Moreover, a brief exposure to an adapted karate program induces an increase in motor competence in DS, even in adulthood.


Assuntos
Síndrome de Down , Adaptação Fisiológica , Adulto , Criança , Humanos , Destreza Motora
14.
PLoS One ; 16(7): e0254878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293019

RESUMO

Musculoskeletal injuries, a public health priority also in the military context, are ascribed to several risk factors, including: increased reaction forces; low/reduced muscle strength, endurance, body mass, Vitamin D level, and bone density; inadequate lifestyles and environment. The MOVIDA Project-funded by the Italian Ministry of Defence-aims at developing a transportable toolkit (assessment instrumentation, assessment protocols and reference/risk thresholds) which integrates motor function assessment with biological, environmental and behavioural factors to help characterizing the risk of stress fracture, stress injury or muscle fatigue due to mechanical overload. The MOVIDA study has been designed following the STROBE guidelines for observational cross-sectional studies addressing healthy adults, both militaries and civilians, with varying levels of physical fitness (sedentary people, recreational athletes, and competitive athletes). The protocol of the study has been designed and validated and is hereby reported. It allows to collect and analyse anamnestic, diagnostic and lifestyle-related data, environmental parameters, and functional parameters measured through portable and wearable instrumentation during adapted 6 minutes walking test. The t-test, one and two-way ANOVA with post-hoc corrections, and ANCOVA tests will be used to investigate relevant differences among the groups with respect to biomechanical parameters; non-parametric statistics will be rather used for non-normal continuous variables and for quantitative discrete variables. Generalized linear models will be used to account for risk and confounding factors.


Assuntos
Atletas , Desempenho Atlético , Aptidão Física , Vitamina D/sangue , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Medição de Risco , Fatores de Risco
15.
Hum Mov Sci ; 78: 102821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022547

RESUMO

INTRODUCTION: Individuals with Down syndrome (DS) show a delayed acquisition of gross motor skills. Among gross motor skills, hopping is a particular form of jumping that can be performed using one leg. Despite its large use during play and physical activity, this skill in adults with DS has not received much attention so far. Here, we aim at investigating hopping skill in adults with DS both from a quantitative and qualitative point of view. METHODS: Center of mass and dominant leg kinematics during hopping over distance were recorded from 24 adult individuals with DS and from 21 typically developed adults (TD) using two inertial measurement units positioned on the posterior aspect of the lower back and on the lateral malleolus of the hopping leg. From linear acceleration and angular velocity signals, hopping frequency (HF), cycle, stance and flight duration (CD, SD, FD), vertical stiffness (KV) and peak to peak linear acceleration and angular velocities about the cranio-caudal, antero-posterior and medio-lateral axes were extracted. A qualitative process assessment of the hopping skill was carried out using the performance criteria of the test for gross motor development (TGMD-3). The extracted parameters were submitted to analysis of covariance, with stature as a covariate to rule-out possible confounding effects. RESULTS: The qualitative assessment highlighted a poorer hopping performance in the DS group compared to the TD group. DS participants showed higher HF and KV, shorter CD, SD, FD and lower angular velocity about the cranio-caudal axis compared to the TD group. Significant correlations between the temporal parameters of the quantitative assessment and the results of the qualitative assessment were observed. DISCUSSION: The poorer motor competence in hopping in individuals with DS compared to TD peers may be related to the shorter flight time and higher vertical stiffness observed in TD peers. The adopted instrumental approach, overcoming the limitations of subjective evaluations, represents a promising opportunity to quantify motor competence in hopping.


Assuntos
Síndrome de Down , Aceleração , Adulto , Dorso , Fenômenos Biomecânicos , Humanos , Movimento
16.
Sensors (Basel) ; 21(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799941

RESUMO

The interest and competitiveness in sports for persons with disabilities has increased significantly in the recent years, creating a demand for technological tools supporting practice. Wearable sensors offer non-invasive, portable and overall convenient ways to monitor sports practice. This systematic review aims at providing current evidence on the application of wearable sensors in sports for persons with disability. A search for articles published in English before May 2020 was performed on Scopus, Web-Of-Science, PubMed and EBSCO databases, searching titles, abstracts and keywords with a search string involving terms regarding wearable sensors, sports and disability. After full paper screening, 39 studies were included. Inertial and EMG sensors were the most commonly adopted wearable technologies, while wheelchair sports were the most investigated. Four main target applications of wearable sensors relevant to sports for people with disability were identified and discussed: athlete classification, injury prevention, performance characterization for training optimization and equipment customization. The collected evidence provides an overview on the application of wearable sensors in sports for persons with disability, providing useful indication for researchers, coaches and trainers. Several gaps in the different target applications are highlighted altogether with recommendation on future directions.


Assuntos
Pessoas com Deficiência , Esportes , Dispositivos Eletrônicos Vestíveis , Atletas , Humanos , Monitorização Fisiológica
18.
Sensors (Basel) ; 21(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916269

RESUMO

Overuse-related musculoskeletal injuries mostly affect athletes, especially if involved in preseason conditioning, and military populations; they may also occur, however, when pathological or biological conditions render the musculoskeletal system inadequate to cope with a mechanical load, even if moderate. Within the MOVIDA (Motor function and Vitamin D: toolkit for risk Assessment and prediction) Project, funded by the Italian Ministry of Defence, a systematic review of the literature was conducted to support the development of a transportable toolkit (instrumentation, protocols and reference/risk thresholds) to help characterize the risk of overuse-related musculoskeletal injury. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach was used to analyze Review papers indexed in PubMed and published in the period 2010 to 2020. The search focused on stress (overuse) fracture or injuries, and muscle fatigue in the lower limbs in association with functional (biomechanical) or biological biomarkers. A total of 225 Review papers were retrieved: 115 were found eligible for full text analysis and led to another 141 research papers derived from a second-level search. A total of 183 papers were finally chosen for analysis: 74 were classified as introductory to the topics, 109 were analyzed in depth. Qualitative and, wherever possible, quantitative syntheses were carried out with respect to the literature review process and quality, injury epidemiology (type and location of injuries, and investigated populations), risk factors, assessment techniques and assessment protocols.


Assuntos
Transtornos Traumáticos Cumulativos , Sistema Musculoesquelético , Transtornos Traumáticos Cumulativos/diagnóstico , Transtornos Traumáticos Cumulativos/epidemiologia , Humanos , Itália , Sistema Musculoesquelético/lesões , Medição de Risco , Fatores de Risco
19.
J Biomech ; 111: 109998, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32891015

RESUMO

When skin-markers trajectories are used in human movement analysis, compensating for their relative movement with respect to the underlying bone (soft tissue artefact, STA) is essential for accurate bone-pose estimation; information about the artefact is required in the form of a mathematical model. Such model, not available for pelvic artefacts, could allow pelvic STA compensation in routine gait analysis by embedding it in skeletal kinematics estimators and developing ad-hoc optimization problems for the estimate of subject-specific model parameters. It was developed as driven by adjacent body segment kinematics. Model architecture feasibility was tested; its compensation effectiveness was assessed evaluating the error in pelvic orientation after removing the modelled artefact from the measured one. Five volunteers with a wide body mass range (BMI: 22-37) underwent MRI scans to reconstruct subject-specific pelvic digital bone models. Multiple anatomical calibrations performed in different static postures, as occurring during walking and star-arc movements, registering the bone-models with points digitized through stereophotogrammetry over pelvic bony prominences, allowed to define the relevant poses of a pelvis-embedded anatomical coordinate system. Such approach allowed to measure STAs over several pelvic anatomical landmarks, for each posture and subject. Model parameters were estimated by minimizing the least squares difference between measured and modelled STAs. The measured STAs were appropriately modelled with subject-specific calibrations, both in terms of shape (correlation coefficient: median [inter-quartile-range]: 0.72 [0.36]) and amplitude (root mean square residual: 3.0 [3.2] mm). Consequently, the overall error in pelvic orientation vector (5.1 [4.4] deg) was reduced after removing the modelled artefacts (2.5 [1.9] deg).


Assuntos
Artefatos , Modelos Biológicos , Fenômenos Biomecânicos , Humanos , Movimento , Pelve/diagnóstico por imagem
20.
Accid Anal Prev ; 133: 105239, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563016

RESUMO

The safety of roadside restraint systems in Europe is ensured by the EN 1317 regulation. The ability of the barrier to mitigate injury to the occupants of vehicles is tested according to two occupant injury metrics: Acceleration Severity Index (ASI) and Theoretical Head Impact Velocity (THIV). Both metrics aim to predict occupant head injury from vehicle kinematics, despite the potential to easily measure actual head kinematics from instrumented Anthropomorphic Test Dummies, a non-instrumented version of which is already required according to the regulation. Retrospective data provided by AISICO S.r.l. for 33 certificated barrier tests, where acceleration of the dummy's head had also been recorded, were re-analysed. ASI and THIV were compared with Head Injury Criterion (HIC15) and Neck injury Criterion (Nij), as well as corresponding Real Head Impact Velocity (RHIV) values. Three barriers presented HIC15 values above the threshold used in crashworthiness testing, two of which corresponded to fatal injury according to the Abbreviated Injury Scale. One barrier presented an Nij value corresponding to a 30% risk of neck injury. RHIV values were above the regulation threshold in 15% of tests, but were not significantly different from the corresponding THIV values. It was concluded that vehicle kinematics do not accurately predict head kinematics during barrier testing. The presented data indicate the current EN 1317 regulation was not capable of detecting all potential dangerous outcomes, with the potential to underestimate occupant risk. Further investigation is necessary to devise suitable indices based on actual head and neck data. These data would be obtained from a dummy instrumented with both a head accelerometer and neck load cell and, possibly, a gyroscope. To consistently test the true worst-case scenario, the tested side window should be closed and non-reinforced.


Assuntos
Acidentes de Trânsito/prevenção & controle , Ambiente Construído/legislação & jurisprudência , Traumatismos Craniocerebrais/etiologia , Escala Resumida de Ferimentos , Aceleração , Fenômenos Biomecânicos , Ambiente Construído/estatística & dados numéricos , Traumatismos Craniocerebrais/prevenção & controle , Europa (Continente) , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA