Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106006

RESUMO

Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1ß2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.

2.
Commun Med (Lond) ; 2: 112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082175

RESUMO

Background: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but serious side effect of nitrogen-containing bisphosphonate drugs (N-BPs) frequently prescribed to reduce skeletal-related events in bone malignancies and osteoporosis. BRONJ is associated with abnormal oral wound healing after dentoalveolar surgery and tooth extraction. We previously found that N-BP chemisorbed to bone mineral hydroxyapatite was dissociated by secondary applied N-BP. This study investigated the effect of the surface equilibrium-based removal of N-BP from jawbone on tooth extraction wound healing of zoledronate (ZOL)-treated mice. Methods: A pharmacologically inactive N-BP derivative (the 4-pyridyl isomer of risedronate equipped with a near-infrared 800CW fluorescent imaging dye, 800CW-pRIS) was designed and synthesized. 800CW-pRIS was intra-orally injected or topically applied in a deformable nano-scale vesicle formulation (DNV) to the palatal tissue of mice pretreated with ZOL, a potent N-BP. The female C56BL6/J mice were subjected to maxillary molar extraction and oral wound healing was compared for 800CW-pRIS/ZOL, ZOL and untreated control groups. Results: 800CW-pRIS is confirmed to be inactive in inhibiting prenylation in cultured osteoclasts while retaining high affinity for hydroxyapatite. ZOL-injected mice exhibit delayed tooth extraction wound healing with osteonecrosis relative to the untreated controls. 800CW-pRIS applied topically to the jaw one week before tooth extraction significantly reduces gingival oral barrier inflammation, improves extraction socket bone regeneration, and prevents development of osteonecrosis in ZOL-injected mice. Conclusions: Topical pre-treatment with 800CW-RIS in DNV is a promising approach to prevent the complication of abnormal oral wound healing associated with BRONJ while retaining the anti-resorptive benefit of legacy N-BP in appendicular or vertebrate bones.

3.
Elife ; 112022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36017995

RESUMO

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) presents as a morbid jawbone lesion in patients exposed to a nitrogen-containing bisphosphonate (N-BP). Although it is rare, BRONJ has caused apprehension among patients and healthcare providers and decreased acceptance of this antiresorptive drug class to treat osteoporosis and metastatic osteolysis. We report here a novel method to elucidate the pathological mechanism of BRONJ by the selective removal of legacy N-BP from the jawbone using an intra-oral application of hydroxymethylene diphosphonate (HMDP) formulated in liposome-based deformable nanoscale vesicles (DNV). After maxillary tooth extraction, zoledronate-treated mice developed delayed gingival wound closure, delayed tooth extraction socket healing and increased jawbone osteonecrosis consistent with human BRONJ lesions. Single cell RNA sequencing of mouse gingival cells revealed oral barrier immune dysregulation and unresolved proinflammatory reaction. HMDP-DNV topical applications to nascent mouse BRONJ lesions resulted in accelerated gingival wound closure and bone socket healing as well as attenuation of osteonecrosis development. The gingival single cell RNA sequencing demonstrated resolution of chronic inflammation by increased anti-inflammatory signature gene expression of lymphocytes and myeloid-derived suppressor cells. This study suggests that BRONJ pathology is related to N-BP levels in jawbones and demonstrates the potential of HMDP-DNV as an effective BRONJ therapy.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/terapia , Difosfonatos/efeitos adversos , Humanos , Lipossomos , Camundongos , Nitrogênio , Ácido Zoledrônico
4.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563647

RESUMO

Fatigue and other deleterious mood alterations resulting from prolonged efforts such as a long work shift can lead to a decrease in vigilance and cognitive performance, increasing the likelihood of errors during the execution of attention-demanding activities such as piloting an aircraft or performing medical procedures. Thus, a method to rapidly and objectively assess the risk for such cognitive fatigue would be of value. The objective of the study was the identification in saliva-borne exosomes of molecular signals associated with changes in mood and fatigue that may increase the risk of reduced cognitive performance. Using integrated multiomics analysis of exosomes from the saliva of medical residents before and after a 12 h work shift, we observed changes in the abundances of several proteins and miRNAs that were associated with various mood states, and specifically fatigue, as determined by a Profile of Mood States questionnaire. The findings herein point to a promising protein biomarker, phosphoglycerate kinase 1 (PGK1), that was associated with fatigue and displayed changes in abundance in saliva, and we suggest a possible biological mechanism whereby the expression of the PGK1 gene is regulated by miR3185 in response to fatigue. Overall, these data suggest that multiomics analysis of salivary exosomes has merit for identifying novel biomarkers associated with changes in mood states and fatigue. The promising biomarker protein presents an opportunity for the development of a rapid saliva-based test for the assessment of these changes.


Assuntos
Exossomos , MicroRNAs , Biomarcadores/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/metabolismo , Saliva/metabolismo
5.
Lab Invest ; 101(12): 1605-1617, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34462532

RESUMO

Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aß release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aß42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aß. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aß within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Agregação Patológica de Proteínas
7.
Mol Brain ; 14(1): 70, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875010

RESUMO

AIM: We have previously reported that cambinol (DDL-112), a known inhibitor of neutral sphingomyelinase-2 (nSMase2), suppressed extracellular vesicle (EV)/exosome production in vitro in a cell model and reduced tau seed propagation. The enzyme nSMase2 is involved in the production of exosomes carrying proteopathic seeds and could contribute to cell-to-cell transmission of pathological protein aggregates implicated in neurodegenerative diseases such as Parkinson's disease (PD). Here, we performed in vivo studies to determine if DDL-112 can reduce brain EV/exosome production and proteopathic alpha synuclein (αSyn) spread in a PD mouse model. METHODS: The acute effects of single-dose treatment with DDL-112 on interleukin-1ß-induced extracellular vesicle (EV) release in brain tissue of Thy1-αSyn PD model mice and chronic effects of 5 week DDL-112 treatment on behavioral/motor function and proteinase K-resistant αSyn aggregates in the PD model were determined. RESULTS/DISCUSSION: In the acute study, pre-treatment with DDL-112 reduced EV/exosome biogenesis and in the chronic study, treatment with DDL-112 was associated with a reduction in αSyn aggregates in the substantia nigra and improvement in motor function. Inhibition of nSMase2 thus offers a new approach to therapeutic development for neurodegenerative diseases with the potential to reduce the spread of disease-specific proteopathic proteins.


Assuntos
Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Exossomos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Exossomos/ultraestrutura , Camundongos Transgênicos , Naftalenos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Pirimidinonas/farmacologia , Sirtuínas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
8.
Cell Rep Med ; 1(7): 100122, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205074

RESUMO

Mutations in CAPN3 cause limb girdle muscular dystrophy R1 (LGMDR1, formerly LGMD2A) and lead to progressive and debilitating muscle wasting. Calpain 3 deficiency is associated with impaired CaMKIIß signaling and blunted transcriptional programs that encode the slow-oxidative muscle phenotype. We conducted a high-throughput screen on a target of CaMKII (Myl2) to identify compounds to override this signaling defect; 4 were tested in vivo in the Capn3 knockout (C3KO) model of LGMDR1. The leading compound, AMBMP, showed good exposure and was able to reverse the LGMDR1 phenotype in vivo, including improved oxidative properties, increased slow fiber size, and enhanced exercise performance. AMBMP also activated CaMKIIß signaling, but it did not alter other pathways known to be associated with muscle growth. Thus, AMBMP treatment activates CaMKII and metabolically reprograms skeletal muscle toward a slow muscle phenotype. These proof-of-concept studies lend support for an approach to the development of therapeutics for LGMDR1.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calpaína/genética , Miosinas Cardíacas/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Cadeias Leves de Miosina/genética , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calpaína/deficiência , Miosinas Cardíacas/metabolismo , Linhagem Celular , Creatina Quinase Mitocondrial/genética , Creatina Quinase Mitocondrial/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/patologia , Cadeias Leves de Miosina/metabolismo , Estresse Oxidativo , Fenótipo , Condicionamento Físico Animal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
9.
Skelet Muscle ; 10(1): 26, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948250

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by mutations in the dystrophin gene. Loss of dystrophin prevents the formation of a critical connection between the muscle cell membrane and the extracellular matrix. Overexpression of sarcospan (SSPN) in the mouse model of DMD restores the membrane connection and reduces disease severity, making SSPN a promising therapeutic target for pharmacological upregulation. METHODS: Using a previously described cell-based promoter reporter assay of SSPN gene expression (hSSPN-EGFP), we conducted high-throughput screening on libraries of over 200,000 curated small molecules to identify SSPN modulators. The hits were validated in both hSSPN-EGFP and hSSPN-luciferase reporter cells. Hit selection was conducted on dystrophin-deficient mouse and human myotubes with assessments of (1) SSPN gene expression using quantitative PCR and (2) SSPN protein expression using immunoblotting and an ELISA. A membrane stability assay using osmotic shock was used to validate the functional effects of treatment followed by cell surface biotinylation to label cell surface proteins. Dystrophin-deficient mdx mice were treated with compound, and muscle was subjected to quantitative PCR to assess SSPN gene expression. RESULTS: We identified and validated lead compounds that increased SSPN gene and protein expression in dystrophin-deficient mouse and human muscle cells. The lead compound OT-9 increased cell membrane localization of compensatory laminin-binding adhesion complexes and improved membrane stability in DMD myotubes. We demonstrated that the membrane stabilizing benefit is dependent on SSPN. Intramuscular injection of OT-9 in the mouse model of DMD increased SSPN gene expression. CONCLUSIONS: This study identifies a pharmacological approach to treat DMD and sets the path for the development of SSPN-based therapies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Descoberta de Drogas/métodos , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Neoplasias/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico
10.
ACS Chem Biol ; 15(6): 1671-1684, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32352753

RESUMO

We report the discovery of a novel class of compounds that function as dual inhibitors of the enzymes neutral sphingomyelinase-2 (nSMase2) and acetylcholinesterase (AChE). Inhibition of these enzymes provides a unique strategy to suppress the propagation of tau pathology in the treatment of Alzheimer's disease (AD). We describe the key SAR elements that affect relative nSMase2 and/or AChE inhibitor effects and potency, in addition to the identification of two analogs that suppress the release of tau-bearing exosomes in vitro and in vivo. Identification of these novel dual nSMase2/AChE inhibitors represents a new therapeutic approach to AD and has the potential to lead to the development of truly disease-modifying therapeutics.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Inibidores da Colinesterase/química , Inibidores da Colinesterase/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Relação Estrutura-Atividade
11.
Tetrahedron Lett ; 60(3): 322-326, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30631216

RESUMO

This study describes our development of a microfluidic reaction scheme for the synthesis of fused indoline ring systems found in several bioactive compounds. We have utilized a continuous-flow microfluidic reactor for the reaction of hydrazines with latent aldehydes through the interrupted Fischer indolization reaction to form fused indoline and azaindoline products. We have identified optimal conditions and evaluated the scope of this microfluidic reaction using various hydrazine and latent aldehyde surrogates. This green chemistry approach can be of general utility to rapidly produce indoline scaffolds and intermediates in a continuous manner.

12.
Sci Rep ; 8(1): 17574, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514854

RESUMO

We describe here the results from the testing of a small molecule first-in-class apolipoprotein E4 (ApoE4)-targeted sirtuin1 (SirT1) enhancer, A03, that increases the levels of the neuroprotective enzyme SirT1 while not affecting levels of neurotoxic sirtuin 2 (SirT2) in vitro in ApoE4-transfected cells. A03 was identified by high-throughput screening (HTS) and found to be orally bioavailable and brain penetrant. In vivo, A03 treatment increased SirT1 levels in the hippocampus of 5XFAD-ApoE4 (E4FAD) Alzheimer's disease (AD) model mice and elicited cognitive improvement while inducing no observed toxicity. We were able to resolve the enantiomers of A03 and show using in vitro models that the L-enantiomer was more potent than the corresponding D-enantiomer in increasing SirT1 levels. ApoE4 expression has been shown to decrease the level of the NAD-dependent deacetylase and major longevity determinant SirT1 in brain tissue and serum of AD patients as compared to normal controls. A deficiency in SirT1 level has been recently implicated in increased tau acetylation, a dominant post-translational modification and key pathological event in AD and tauopathies. Therefore, as a novel approach to therapeutic development for AD, we targeted identification of compounds that enhance and normalize brain SirT1 levels.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antiparkinsonianos/farmacologia , Apolipoproteína E4/metabolismo , Hipocampo/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Animais , Antiparkinsonianos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
13.
Biochem Biophys Res Commun ; 499(4): 751-757, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29604274

RESUMO

Targeting of molecular pathways involved in the cell-to-cell propagation of pathological tau species is a novel approach for development of disease-modifying therapies that could block tau pathology and attenuate cognitive decline in patients with Alzheimer's disease and other tauopathies. We discovered cambinol through a screening effort and show that it is an inhibitor of cell-to-cell tau propagation. Our in vitro data demonstrate that cambinol inhibits neutral sphingomyelinase 2 (nSMase2) enzyme activity in dose response fashion, and suppresses extracellular vesicle (EV) production while reducing tau seed propagation. Our in vivo testing with cambinol shows that it can reduce the nSMase2 activity in the brain after oral administration. Our molecular docking and simulation analysis reveals that cambinol can target the DK-switch in the nSMase2 active site.


Assuntos
Inibidores Enzimáticos/farmacologia , Naftalenos/farmacologia , Pirimidinonas/farmacologia , Esfingomielina Fosfodiesterase/química , Proteínas tau/metabolismo , Animais , Técnicas Biossensoriais , Encéfalo/metabolismo , Sistema Livre de Células , Inibidores Enzimáticos/química , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Naftalenos/química , Permeabilidade , Domínios Proteicos , Pirimidinonas/química , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Extratos de Tecidos , Proteínas tau/antagonistas & inibidores
14.
J Mol Biol ; 430(11): 1566-1576, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29649434

RESUMO

The aspartyl protease BACE1 (BACE) has emerged as an appealing target for reduction of amyloid-ß in Alzheimer's disease. The clinical fate of active-site BACE inhibitors may depend on potential side effects related to enzyme and substrate selectivity. One strategy to reduce this risk is through development of allosteric inhibitors that interact with and modulate the Loop F region unique to BACE1. Previously, a BACE-inhibiting antibody (Ab) was shown by co-crystallization to bind and induce conformational changes of Loop F, resulting in backbone perturbations at the distal S6 and S7 subsites, preventing proper binding of a long APP-like substrate to BACE and inhibiting its cleavage. In an effort to discover small Loop F-interacting molecules that mimic the Ab inhibition, we evaluated a peptide series with a YPYF(I/L)P(L/Y) motif that was reported to bind a BACE exosite. Our studies show that the most potent inhibitor from this series, peptide 65007, has a similar substrate cleavage profile to the Ab and reduces sAPPß levels in cell models and primary neurons. As our modeling indicates, it interacts with the Loop F region causing a conformational shift of the BACE protein backbone near the distal subsites. The peptide-bound enzyme adopts a conformation that closely overlays with the crystal structure (PDB: 3R1G) from Ab binding. Importantly, peptide 65007 appears to be BACE substrate and enzyme selective, showing little inhibition of NRG1, PSGL1, CHL1, or Cat D. Thus, peptide 65007 is a promising lead for discovery of Loop F-interacting small-molecule mimetics as allosteric inhibitors of BACE.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Peptídeos/síntese química , Peptídeos/farmacologia , Regulação Alostérica , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Sítios de Ligação , Simulação por Computador , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/química , Conformação Proteica
15.
J Drug Deliv ; 2017: 4759839, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480080

RESUMO

Phospholipid-based deformable nanovesicles (DNVs) that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol). AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue-cranial bone-by DNVs as compared to nondeformable nanovesicles (NVs) or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.

16.
Front Pharmacol ; 8: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261092

RESUMO

Alzheimer's disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds - identified here using cells and tissues expressing wt human APP - in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects.

17.
Tetrahedron Lett ; 57(19): 2059-2062, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27152054

RESUMO

This study describes our development of a novel and efficient procedure for C-O bond formation under mild conditions, for coupling heteroaryl chlorides with phenols or primary aliphatic alcohols. We utilized a continuous-flow microfluidic reactor for C-O bond formation in electron-deficient pyrimidines and pyridines in a much more facile manner with a cleaner reaction profile, high yield, quick scalability and without the need for the transition metal catalyst. This approach can be of general utility to make C-O bond containing intermediates of industrial importance in a continuous and safe manner.

18.
Int J Alzheimers Dis ; 2016: 8053139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27213078

RESUMO

Diagnostic assays that leverage bloodborne neuron-derived (neuronal) nanoscale extracellular vesicles (nsEVs) as "windows into the brain" can predict incidence of Alzheimer's Disease (AD) many years prior to onset. Beyond diagnostics, bloodborne neuronal nsEVs analysis may have substantial translational impact by revealing mechanisms of AD pathology; such knowledge could enlighten new drug targets and lead to new therapeutic approaches. The potential to establish three-dimensional nsEV analysis methods that characterize highly purified bloodborne nsEV populations in method of enrichment, cell type origin, and protein or RNA abundance dimensions could bring this promise to bear by yielding nsEV "omics" datasets that uncover new AD biomarkers and enable AD therapeutic development. In this review we provide a survey of both the current status of and new developments on the horizon in the field of neuronal nsEV analysis. This survey is supplemented by a discussion of the potential to translate such neuronal nsEV analyses to AD clinical diagnostic applications and drug development.

19.
J Alzheimers Dis ; 52(1): 223-42, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27060954

RESUMO

Recent studies have shown that inoculation of susceptible mice with amyloid-ß (Aß) peptides accelerates Aß deposition in the brain, supporting the idea that Aß may be self-amplifying; however, the exact mechanism is not understood. Here we provide evidence that Aß may self-amplify, in part, by inhibiting α-secretase ADAM10 (a disintegrin and metalloprotease) cleavage of full-length Aß precursor protein (FL AßPP) and therefore allow greater ß-secretase processing, and that Aß itself is a substrate for ADAM10. Exposure of primary neuronal cultures from PDAßPP mice to exogenous rat Aß1- 40 resulted in increased de novo human Aß1-42 production and exposure of cells to Aß decreased production of ADAM10 cleavage product soluble AßPPα (sAßPPα). In a cell-free assay, Aß decreased ADAM10 cleavage of the chimeric substrate MBP-AßPPC125 and Aß itself was apparently cleaved by the enzyme. The axonal guidance and trophic factor netrin-1, however, reduced the Aß1- 40-induced Aß1-42 increase, increased sAßPPα, and reversed the Aß-induced sAßPPα decrease in vitro. In vivo, induction of netrin-1 expression in PDAßPPSwe/Ind transgenic mice resulted in reductions in both Aß1-42 and Aß1- 40, and ICV delivery of netrin-1 to PDAßPPSwe/Ind mice increased sAßPPα, decreased Aß, and improved working memory. Finally, to support further study of netrin-1's potential as a therapeutic for Alzheimer's disease, pilot gene therapy studies were performed and a netrin mimetic peptide synthesized and tested that, like netrin, can increase sAßPPα and decrease Aß1-42in vitro. Taken together, these data provide mechanistic insights into Aß self-amplification and the ability of netrin-1 to disrupt it.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Terapia Genética/métodos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína ADAM10/metabolismo , Doença de Alzheimer/psicologia , Animais , Biomimética , Linhagem Celular Tumoral , Cognição/fisiologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Memória de Curto Prazo/fisiologia , Camundongos Transgênicos , Netrina-1 , Projetos Piloto , Ratos , Reconhecimento Psicológico/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
J Alzheimers Dis ; 47(3): 545-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401691

RESUMO

Proteolytic cleavage of the amyloid-ß protein precursor (AßPP) by the enzyme BACE1 (BACE) is the initial step in production of amyloid-ß peptide (Aß), and as such has been a major target of Alzheimer's disease (AD) drug discovery efforts. Overproduction of Aß results in neuronal cell death and accumulation of amyloid plaques in AD and in traumatic brain injury, and is also associated with stroke due to cerebral amyloid angiopathy. Herein we report for the first time that sAßPPα, the product of the cleavage of AßPP by α-secretase, is a potent endogenous direct inhibitor of the BACE enzyme, and that its inhibition is likely by an allosteric mechanism. Furthermore, using small-angle X-ray scattering, we show that sAßPPß, which is identical to sAßPPα except for a 16-amino acid truncation at the carboxy terminus, adopts a completely different structure than sAßPPα and does not inhibit BACE. Our data thus reveal a novel mechanistic role played by sAßPPα in regulating overproduction of Aß and restoring neuronal homeostasis and neuroprotection. Identification of sAßPPα as a direct BACE inhibitor may lead to design of new therapeutics targeting pathologies associated with overproduction of Aß.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Humanos , Imunoprecipitação , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA