Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 12683-12721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253828

RESUMO

Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.


Assuntos
Metais Pesados , Nanoestruturas , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Poluentes Químicos da Água/química , Adsorção , Água
2.
Environ Toxicol Pharmacol ; 99: 104105, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893890

RESUMO

In this study, mesoporous doped-carbons were synthesized from sucrose, a natural source, boric acid and cyanamide as precursors, generating B- or N-doped carbon. These materials were characterized by FTIR, XRD, TGA, Raman, SEM, TEM, BET, and XPS, confirming the preparation of a tridimensional doped porous structure. B-MPC and N-MPC showed a high surface specific area above 1000 m2/g. The effect of B and N doping on mesoporous carbon was evaluated on the adsorption of emerging pollutants from water. Diclofenac sodium and paracetamol were used in adsorption assays, reaching removal capacities of 78 and 101 mg.g-1, respectively. Kinetic and isothermal studies indicate the chemical nature of adsorption controlled by external and intraparticle diffusion and multilayer formation due to strong adsorbent/adsorbate interactions. DFT-based calculations and adsorption assays infer that the main attractive forces are hydrogen bonds and Lewis acid-base interactions.


Assuntos
Carbono , Poluentes Químicos da Água , Adsorção , Água , Poluentes Químicos da Água/química , Cinética , Preparações Farmacêuticas
3.
Environ Pollut ; 322: 121166, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738879

RESUMO

The wide use of carbon-based materials for various purposes leads to their discharge in the aquatic systems, and simultaneous occurrence with other environmental contaminants, such as pharmaceutical drugs. This co-occurrence can adversely affect exposed aquatic organisms. Up to now, few studies have considered the simultaneous toxicity of nanomaterials, and organic contaminants, including pharmaceutical drugs, towards aquatic plants. Thus, this study aimed to assess the toxic effects of the co-exposure of propranolol (PRO), and nanomaterials based on cellulose nanocrystal, and graphene oxide in the aquatic macrophyte Lemna minor. The observed effects included reduction of growth rate in 13% in co-exposure 1 (nanomaterials + PRO 5 µg L-1), and 52-64% in co-exposure 2 (nanomaterials + PRO 51.3 mg L-1), fresh weight reduction of 94-97% in co-exposure 2 compared to control group, and increased pigment production caused by co-exposure treatments. The analysis of PCA showed that co-exposure 1 (nanomaterials + PRO 5 µg L-1) positively affected growth, and fresh weight, and co-exposure 2 positively affected pigments content. The results suggested that the presence of nanomaterials enhanced the overall toxicity of PRO, exerting deleterious effects in the freshwater plant L. minor, suggesting that this higher toxicity resulting from co-exposure was a consequence of the interaction between nanomaterials and PRO.


Assuntos
Araceae , Nanopartículas , Poluentes Químicos da Água , Antagonistas Adrenérgicos beta , Propranolol , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade
4.
Environ Res ; 220: 115197, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592805

RESUMO

Hydrophobic chitosan aerogels are promising adsorbents for immiscible contaminants such as oils and organic solvents. However, few studies have reported the application of hydrophobic aerogels as adsorbent for organic contaminants dissolved in water. Herein, novel highly hydrophobic chitosan (CS) beads containing cellulose nanocrystals (CNC) and hydrophobized tannic acid (HTA) composite were prepared with different CS and CNC-HTA content to achieve an optimized adsorbent to remove emerging contaminants from water in batch and fixed-bed assays. The CS@CNC-HTA beads properties were assessed by FTIR, XRD, SEM, XPS, Micro-CT, WCA, and zeta potential. Supramolecular interactions and physical interlacements between CS and CNC-HTA enabled the formation of CS@CNC-HTA beads with high porosity (98.6%), great volume of open pore space (10.16 mm3) and hydrophobicity (121.8°). The 1:1 CS@CNC-HTA beads showed the best performance for removing the pharmaceutical sildenafil citrate, the basic blue 26 dye, and the surfactant cetylpyridinium chloride, reaching adsorption capacities of 86 (73%), 375 (84%), and 390 (90%) mg.g-1, respectively. The 1:1 CS@CNC-HTA beads efficiently removed sildenafil citrate, basic blue 26 and cetylpyridinium chloride in fixed-bed experiments with exhaustion times of 890, 300, and 470 min, respectively. Theoretical calculations and adsorption assays indicate that the main attractive interactions are pyridinium-π, π-π, electrostatic and hydrophobic.


Assuntos
Quitosana , Poluentes Químicos da Água , Água , Quitosana/química , Adsorção , Cetilpiridínio , Citrato de Sildenafila , Poluentes Químicos da Água/análise , Celulose/química
5.
Sci Total Environ ; 822: 153515, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101508

RESUMO

Graphene oxide (GO) production has increased considerably and therefore its presence in the environment is inevitable. When in aquatic environment GO can interact with co-existing compounds, modifying their toxicities for several organisms. However, the toxic effects of co-exposure of GO and organic compounds are rarely reported in the literature. Herein, we studied the behavior of four organic aquatic contaminants found in surface water such as 2-phenylbenzotriazoles (non-Cl PBTA-9 and PBTA-9) and phenoxyphenyl pesticides, pyriproxyfen (PYR) and lambdacyhalothrin (LCT), in the presence of GO. GO reduced 90% and 83% of the toxicity of non-Cl PBTA-9 and PBTA for Daphnia. When PBTAs were adsorbed onto GO surface their interactions caused GO agglomeration (up to 20 mm) and consequent precipitation, making PBTAs less bioavailable. PYR and LCT's toxicities increased up to 83% for PYR and 47% for LCT in the presence of GO, because their adsorption on GO lead to the stabilization of the suspensions (up to 0.5 µm). Those particles were then easily ingested and retained in the digestive tract of the daphnids, triggering the Trojan horse effect. Based on theoretical calculations we observed that PBTA compounds are planar, electron-poorer and more reactive than the studied pesticides, suggesting a better stability of the GO/PBTA complexes. PYR and LCT are nonplanar, electron-richer and less reactive towards GO than PBTAs, forming less stable GO complexes that could facilitate the desorption of pesticides, increasing toxic effects. Our results suggest that the properties of the organic toxicants can influence the stability of graphene oxide suspensions, playing a fundamental role in the modulation of their toxicity. Further research is needed for a deep understanding of the behavior of nanomaterials in the presence of contaminants and their effect in the toxicity of aquatic organisms.


Assuntos
Grafite , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Daphnia , Grafite/química , Grafite/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
6.
Environ Mol Mutagen ; 62(8): 471-477, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34459030

RESUMO

Dinitrophenylazo dyes can form 2-phenylbenzotriazoles (PBTAs) in the textile dyeing process upon the addition of chemical reducing agents. Some dinitrophenylazo dyes, as well as their respective reduced (non-chlorinated) and chlorinated PBTAs, are now found in rivers owing to wastewater from textile plants. This study aimed to investigate the genotoxicity of a new PBTA derived from C.I. Disperse Violet 93 azo dye, namely non-Cl PBTA-9. Primary DNA damage in the blood, liver, and colon cells, micronucleated cells in the bone marrow, and gene expression (NAT2, CYP1A1, TRP53, and CDKN1A) in liver cells were observed in mice, at acute oral exposure (gavage) doses of 5, 50, and 500 µg/kg body weight (b.w.). The non-chlorinated PBTA-9 caused DNA damage in the blood and liver (at 500 µg/kg b.w.) and in colon cells (at 5, 50, and 500 µg/kg), and increased the frequency of micronucleated cells in the bone marrow (at 5 and 50 µg/kg). No histological alterations or gene expression changes were observed. In conclusion, in vivo exposure to non-chlorinated PBTA-9 induced genetic damage in various rodent tissues, corroborating results previously obtained from the Ames test. Because this compound has been detected in rivers, exposure to humans and biota is a major concern.


Assuntos
Dano ao DNA , Mutagênese , Mutagênicos/toxicidade , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Masculino , Camundongos , Testes de Mutagenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA