Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724025

RESUMO

Hydrangeas (Hydrangea L.) are popular ornamental plants used in urban landscapes and gardens worldwide for the beauty of their large flowers. In June 2022, dark brown/purple and irregular water-soaked spots coalescing into large areas of necrosis were observed on the leaves of potted Hydrangea quercifolia Bartr. plants growing in two ornamentals nurseries in Pistoia, Tuscany, Italy. Isolations, using two symptomatic plants/nursery, were performed by excising small portions of leaf tissue from the margin of the lesions, and macerating them in 100 µl of sterile distilled water (SDW). After 15 min of incubation, a loopful of the resulting suspension was streaked on yeast extract-dextrose-CaCO3 agar (YDCA) amended with 60 mg L-1 cycloheximide. Mucoid, convex and yellow colonies appeared on YDCA after incubation at 28°C for 48h. After colony purification on yeast extract-nutrient-agar (YNA), two isolates from each nursery were subject to amplification and sequence analysis of the 16S rRNA using universal primers FD1/RD1, for genus identification (Vauterin et al. 2000; Weisburg et al. 1991). All 16S rRNA sequences (OP441051) were identical and BLASTn searches indicated that the isolates belong to the genus Xanthomonas [99.9% nucleotide identity with X. hydrangeae strain LMG 31885 (LR990741.1) and 99.8% with strain LMG 31884T (NR_181958.1)]. For classification at species level, fragments of the housekeeping genes gyrB, rpoD, dnaK, and fyuA, were amplified according to Young et al. (2008). Both strands were sequenced and the consensus sequences aligned using MUSCLE as implemented in MEGA X (Kumar et al. 2018). Homologous sequences were once again identical between the isolates. A neighbor joining phylogenetic analysis of the concatenated fragments, was carried out, using the Tuscan isolate HyQ-Tu1, the type/pathotype strains of the seven pathovars of X.hortorum, proposed by Morinière et al. (2020), the four X.hydrangeae strains characterized by Dia et al. (2021) and the type strain of X.populi as the outgroup. The analysis indicated that HyQ-Tu1 isolate clusters within the X. hydrangeae branch of the recently described X. hortorum - X. hydrangeae species complex (Morinière et al. 2020; Dia et al. 2021; 2022). In agreement with this result, isolates tested positive to the LAMP assay specific for members of the complex's clade C (X. hydrangeae) (Dia et al. 2022). Based on molecular evidence, the isolates were identified as X. hydrangeae (Dia et al. 2021; Oren and Garrity, 2022). Three healthy H. quercifolia potted plants were inoculated by rubbing a 10 µl droplet of a bacterial suspension of X. hydrangeae HyQ-Tu1 adjusted to an OD600 of 0.3 (approx. 108 CFU/ml) in SDW on the adaxial surface of two leaves per plant. Two control leaves/plant were inoculated with SDW. Each inoculated leaf was enclosed for 24h in a polyethylene bag and all plants were maintained in a greenhouse at 28°C. Nine days post inoculation (DPI), leaf spots similar to those observed on naturally infected plants started to become evident on the bacteria-inoculated leaves while control leaves remained asymptomatic throughout the trial (21 DPI). Koch's postulates were fulfilled by re-isolating the bacterium from the symptomatic tissues, obtaining a positive amplification with the clade C-specific LAMP assay (Dia et al. 2022), and confirming that the gyrB sequence was 100% identical to that of X. hydrangeae HyQ-Tu1. Housekeeping gene sequences were submitted to GenBank (OP456006-9). Members of the X. hortorum - X. hydrangeae species complex have been reported to affect H. quercifolia in the USA (Uddin et al. 1996) and H. quercifolia and H. arborescens L. in Belgium (Cottyn et al. 2021). To the best of our knowledge, this is the first documentation of X. hydrangeae causing disease on H. quercifolia in Italy. Further work is required to verify the presence of the bacterium in other European countries and to assess the economic impact that it causes within and outside nurseries.

2.
Plants (Basel) ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36501353

RESUMO

The use of molecular tools to identify insect pests is a critical issue, especially when rapid and reliable tests are required. We proposed a protocol based on qPCR with SYBR Green technology to identify Philaenus italosignus (Hemiptera, Aphrophoridae). The species is one of the three spittlebugs able to transmit Xylella fastidiosa subsp. pauca ST53 in Italy, together with Philaenus spumarius and Neophilaenus campestris. Although less common than the other two species, its identification is key to verifying which role it can play when locally abundant. The proposed assay shows analytical specificity being inclusive with different populations of the target species and exclusive with non-target taxa, either taxonomically related or not. Moreover, it shows analytical sensibility, repeatability, and reproducibility, resulting in an excellent candidate for an official diagnostic method. The molecular test can discriminate P. italosignus from all non-target species, including the congeneric P. spumarius.

3.
Methods Mol Biol ; 2536: 91-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819599

RESUMO

DNA extraction from plant samples is very important for a good performance of diagnostic molecular assays in phytopathology. The variety of matrices (such as leaves, roots, and twigs) requires a differentiated approach to DNA extraction. Here we describe three categories of matrices: (a) symptomatic bark/wood tissue; (b) residues of frass resulting from insect woody trophic activities, portions of the galleries produced in the wood, and tissues surrounding exit holes; and (c) leaves of different plant species. To improve the performances of diagnostic assays, we here describe DNA extraction procedures that have been optimized for each matrix type.


Assuntos
Folhas de Planta , Plantas , DNA de Plantas/análise , DNA de Plantas/genética , Folhas de Planta/química , Folhas de Planta/genética , Raízes de Plantas/genética , Plantas/genética , Madeira
4.
mSystems ; 6(5): e0059121, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698548

RESUMO

Xylella fastidiosa (Xf) is a globally distributed plant-pathogenic bacterium. The primary control strategy for Xf diseases is eradicating infected plants; therefore, timely and accurate detection is necessary to prevent crop losses and further pathogen dispersal. Conventional Xf diagnostics primarily relies on quantitative PCR (qPCR) assays. However, these methods do not consider new or emerging variants due to pathogen genetic recombination and sensitivity limitations. We developed and tested a metagenomics pipeline using in-house short-read sequencing as a complementary approach for affordable, fast, and highly accurate Xf detection. We used metagenomics to identify Xf to the strain level in single- and mixed-infected plant samples at concentrations as low as 1 pg of bacterial DNA per gram of tissue. We also tested naturally infected samples from various plant species originating from Europe and the United States. We identified Xf subspecies in samples previously considered inconclusive with real-time PCR (quantification cycle [Cq], >35). Overall, we showed the versatility of the pipeline by using different plant hosts and DNA extraction methods. Our pipeline provides taxonomic and functional information for Xf diagnostics without extensive knowledge of the disease. This pipeline demonstrates that metagenomics can be used for early detection of Xf and incorporated as a tool to inform disease management strategies. IMPORTANCE Destructive Xylella fastidiosa (Xf) outbreaks in Europe highlight this pathogen's capacity to expand its host range and geographical distribution. The current disease diagnostic approaches are limited by a multiple-step process, biases to known sequences, and detection limits. We developed a low-cost, user-friendly metagenomic sequencing tool for Xf detection. In less than 3 days, we were able to identify Xf subspecies and strains in field-collected samples. Overall, our pipeline is a diagnostics tool that could be easily extended to other plant-pathogen interactions and implemented for emerging plant threat surveillance.

5.
Int J Biol Macromol ; 179: 279-291, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675829

RESUMO

Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) biovar 3 involved all global interest since 2008. We have found that in Psa3 genome, similarly to other P. syringae, there are three putative genes, lscα, lscß and lscγ, coding for levansucrases. These enzymes, breaking the sucrose moiety and releasing glucose can synthetize the fructose polymer levan, a hexopolysaccharide that is well known to be part of the survival strategies of many different bacteria. Considering lscα non-coding because of a premature stop codon, in the present work we cloned and expressed the two putatively functional levansucrases of Psa3, lscß and lscγ, in E. coli and characterized their biochemical properties such as optimum of pH, temperature and ionic strength. Interestingly, we found completely different behaviour for both sucrose splitting activity and levan synthesis between the two proteins; lscγ polymerizes levan quickly at pH 5.0 while lscß has great sucrose hydrolysis activity at pH 7.0. Moreover, we demonstrated that at least in vitro conditions, they are differentially expressed suggesting two distinct roles in the physiology of the bacterium.


Assuntos
Actinidia/microbiologia , Frutanos/metabolismo , Hexosiltransferases/química , Doenças das Plantas/microbiologia , Pseudomonas syringae , Cinética , Pseudomonas syringae/enzimologia , Pseudomonas syringae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA