Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 628(8007): 365-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509364

RESUMO

Although modern humans left Africa multiple times over 100,000 years ago, those broadly ancestral to non-Africans dispersed less than 100,000 years ago1. Most models hold that these events occurred through green corridors created during humid periods because arid intervals constrained population movements2. Here we report an archaeological site-Shinfa-Metema 1, in the lowlands of northwest Ethiopia, with Youngest Toba Tuff cryptotephra dated to around 74,000 years ago-that provides early and rare evidence of intensive riverine-based foraging aided by the likely adoption of the bow and arrow. The diet included a wide range of terrestrial and aquatic animals. Stable oxygen isotopes from fossil mammal teeth and ostrich eggshell show that the site was occupied during a period of high seasonal aridity. The unusual abundance of fish suggests that capture occurred in the ever smaller and shallower waterholes of a seasonal river during a long dry season, revealing flexible adaptations to challenging climatic conditions during the Middle Stone Age. Adaptive foraging along dry-season waterholes would have transformed seasonal rivers into 'blue highway' corridors, potentially facilitating an out-of-Africa dispersal and suggesting that the event was not restricted to times of humid climates. The behavioural flexibility required to survive seasonally arid conditions in general, and the apparent short-term effects of the Toba supereruption in particular were probably key to the most recent dispersal and subsequent worldwide expansion of modern humans.


Assuntos
Clima , Migração Humana , Animais , Humanos , Arqueologia , Etiópia , Mamíferos , Estações do Ano , Dieta/história , História Antiga , Migração Humana/história , Fósseis , Struthioniformes , Secas , Peixes
2.
PeerJ ; 10: e13210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411256

RESUMO

The Early Pleistocene was a critical time period in the evolution of eastern African mammal faunas, but fossil assemblages sampling this interval are poorly known from Ethiopia's Afar Depression. Field work by the Hadar Research Project in the Busidima Formation exposures (~2.7-0.8 Ma) of Hadar in the lower Awash Valley, resulted in the recovery of an early Homo maxilla (A.L. 666-1) with associated stone tools and fauna from the Maka'amitalu basin in the 1990s. These assemblages are dated to ~2.35 Ma by the Bouroukie Tuff 3 (BKT-3). Continued work by the Hadar Research Project over the last two decades has greatly expanded the faunal collection. Here, we provide a comprehensive account of the Maka'amitalu large mammals (Artiodactyla, Carnivora, Perissodactyla, Primates, and Proboscidea) and discuss their paleoecological and biochronological significance. The size of the Maka'amitalu assemblage is small compared to those from the Hadar Formation (3.45-2.95 Ma) and Ledi-Geraru (2.8-2.6 Ma) but includes at least 20 taxa. Bovids, suids, and Theropithecus are common in terms of both species richness and abundance, whereas carnivorans, equids, and megaherbivores are rare. While the taxonomic composition of the Maka'amitalu fauna indicates significant species turnover from the Hadar Formation and Ledi-Geraru deposits, turnover seems to have occurred at a constant rate through time as taxonomic dissimilarity between adjacent fossil assemblages is strongly predicted by their age difference. A similar pattern characterizes functional ecological turnover, with only subtle changes in dietary proportions, body size proportions, and bovid abundances across the composite lower Awash sequence. Biochronological comparisons with other sites in eastern Africa suggest that the taxa recovered from the Maka'amitalu are broadly consistent with the reported age of the BKT-3 tuff. Considering the age of BKT-3 and biochronology, a range of 2.4-1.9 Ma is most likely for the faunal assemblage.


Assuntos
Hominidae , Mamífero Proboscídeo , Theropithecus , Bovinos , Animais , Suínos , Etiópia , Meio Ambiente , Fósseis , Mamíferos , Perissodáctilos
3.
Proc Natl Acad Sci U S A ; 119(16): e2107393119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412903

RESUMO

Understanding the climatic drivers of environmental variability (EV) during the Plio-Pleistocene and EV's influence on mammalian macroevolution are two outstanding foci of research in African paleoclimatology and evolutionary biology. The potential effects of EV are especially relevant for testing the variability selection hypothesis, which predicts a positive relationship between EV and speciation and extinction rates in fossil mammals. Addressing these questions is stymied, however, by 1) a lack of multiple comparable EV records of sufficient temporal resolution and duration, and 2) the incompleteness of the mammalian fossil record. Here, we first compile a composite history of Pan-African EV spanning the Plio-Pleistocene, which allows us to explore which climatic variables influenced EV. We find that EV exhibits 1) a long-term trend of increasing variability since ∼3.7 Ma, coincident with rising variability in global ice volume and sea surface temperatures around Africa, and 2) a 400-ky frequency correlated with seasonal insolation variability. We then estimate speciation and extinction rates for fossil mammals from eastern Africa using a method that accounts for sampling variation. We find no statistically significant relationship between EV and estimated speciation or extinction rates across multiple spatial scales. These findings are inconsistent with the variability selection hypothesis as applied to macroevolutionary processes.


Assuntos
Evolução Biológica , Clima , Extinção Biológica , Especiação Genética , Hominidae , África , Animais , Fósseis , Hominidae/genética
4.
Proc Biol Sci ; 287(1934): 20201655, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900315

RESUMO

The fossil record of 'lesser apes' (i.e. hylobatids = gibbons and siamangs) is virtually non-existent before the latest Miocene of East Asia. However, molecular data strongly and consistently suggest that hylobatids should be present by approximately 20 Ma; thus, there are large temporal, geographical, and morphological gaps between early fossil apes in Africa and the earliest fossil hylobatids in China. Here, we describe a new approximately 12.5-13.8 Ma fossil ape from the Lower Siwaliks of Ramnagar, India, that fills in these long-standing gaps with implications for hylobatid origins. This ape represents the first new hominoid species discovered at Ramnagar in nearly a century, the first new Siwalik ape taxon in more than 30 years, and likely extends the hylobatid fossil record by approximately 5 Myr, providing a minimum age for hylobatid dispersal coeval to that of great apes. The presence of crown hylobatid molar features in the new species indicates an adaptive shift to a more frugivorous diet during the Middle Miocene, consistent with other proposed adaptations to frugivory (e.g. uricase gene silencing) during this time period as well.


Assuntos
Evolução Biológica , Fósseis , Hylobatidae , Animais , Índia , Filogenia , Primatas
7.
Proc Natl Acad Sci U S A ; 116(24): 11712-11717, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31160451

RESUMO

The manufacture of flaked stone artifacts represents a major milestone in the technology of the human lineage. Although the earliest production of primitive stone tools, predating the genus Homo and emphasizing percussive activities, has been reported at 3.3 million years ago (Ma) from Lomekwi, Kenya, the systematic production of sharp-edged stone tools is unknown before the 2.58-2.55 Ma Oldowan assemblages from Gona, Ethiopia. The organized production of Oldowan stone artifacts is part of a suite of characteristics that is often associated with the adaptive grade shift linked to the genus Homo Recent discoveries from Ledi-Geraru (LG), Ethiopia, place the first occurrence of Homo ∼250 thousand years earlier than the Oldowan at Gona. Here, we describe a substantial assemblage of systematically flaked stone tools excavated in situ from a stratigraphically constrained context [Bokol Dora 1, (BD 1) hereafter] at LG bracketed between 2.61 and 2.58 Ma. Although perhaps more primitive in some respects, quantitative analysis suggests the BD 1 assemblage fits more closely with the variability previously described for the Oldowan than with the earlier Lomekwian or with stone tools produced by modern nonhuman primates. These differences suggest that hominin technology is distinctly different from generalized tool use that may be a shared feature of much of the primate lineage. The BD 1 assemblage, near the origin of our genus, provides a link between behavioral adaptations-in the form of flaked stone artifacts-and the biological evolution of our ancestors.


Assuntos
Paleontologia/métodos , Tecnologia/métodos , Adaptação Fisiológica/fisiologia , Artefatos , Evolução Biológica , Etiópia , Fósseis , Humanos
8.
Nat Ecol Evol ; 1(6): 159, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28812639

RESUMO

It has long been hypothesized that the transition from Australopithecus to Homo in eastern Africa was linked to the spread of open and arid environments near the Plio-Pleistocene boundary, but data for the latest Pliocene are scarce. Here we present new stable carbon isotope data from the late Pliocene mammalian fauna from Ledi-Geraru, in the lower Awash Valley (LAV), Ethiopia, and mammalian community analyses from the LAV and Turkana Basin. These data, combined with pedogenic carbonate stable isotopes, indicate that the two regions were largely similar through the Plio-Pleistocene, but that important environmental differences existed during the emergence of Homo around 2.8 million years ago. The mid-Pliocene to late Pliocene interval in the LAV was characterized by increasingly C4-dominated, arid and seasonal environments. The early Homo mandible LD 350-1 has a carbon isotope value similar to that of earlier Australopithecus from the LAV, possibly indicating that the emergence of Homo from Australopithecus did not involve a dietary shift. Late Pliocene LAV environments contrast with contemporaneous environments in the Turkana Basin, which were more woody and mesic. These findings have important implications for the environmental conditions surrounding the emergence of Homo, as well as recent hypotheses regarding Plio-Pleistocene environmental change in eastern Africa.

9.
J Hum Evol ; 102: 21-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012462

RESUMO

Over the past century, numerous vertebrate fossils collected near the town of Ramnagar, India, have proven to be important for understanding the evolution and biogeography of many mammalian groups. Primates from Ramnagar, though rare, include a number of hominoid specimens attributable to Sivapithecus, as well as a single published mandibular fragment preserving the P4-M1 of the Miocene adapoid Sivaladapis palaeindicus. Since 2010, we have renewed fossil prospecting in the Lower Siwalik deposits near Ramnagar in an attempt to better understand the evolution, biogeographic timing, and paleoclimatic context of mammalian radiations in Asia, with a particular focus on primates. Our explorations have resulted in the identification of new fossil localities, including the site of Sunetar. The age of Sunetar and the Ramnagar region, in general, is tentatively dated between 14 and 11 Ma. In 2014, a partial right mandible of a sivaladapid primate was recovered at Sunetar, preserving the corpus with P4 roots and worn M1-M3 dentition. Although sivaladapids are known by numerous specimens of two genera (Sivaladapis and Indraloris) at Lower Siwalik sites on the Potwar Plateau (Pakistan) and at the Middle Siwalik locality of Haritalyangar (India), this new specimen is just the second sivaladapid recovered from the Ramnagar region. Our analyses suggest that the new specimen is distinct from all other sivaladapids, and we therefore describe it as a new genus and species close to the base of the Sivaladapinae.


Assuntos
Fósseis/anatomia & histologia , Hominidae/classificação , Mandíbula/anatomia & histologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Índia , Paleodontologia/métodos
10.
J Hum Evol ; 99: 93-106, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27650582

RESUMO

One approach to understanding the context of changes in hominin paleodiets is to examine the paleodiets and paleohabitats of contemporaneous mammalian taxa. Recent carbon isotopic studies suggest that the middle Pliocene was marked by a major shift in hominin diets, characterized by a significant increase in C4 foods in Australopithecus-grade species, including Australopithecus afarensis. To contextualize previous isotopic studies of A. afarensis, we employed stable isotopes to examine paleodiets of the mammalian fauna contemporaneous with A. afarensis at Hadar, Ethiopia. We used these data to inform our understanding of paleoenvironmental change through the deposition of the Hadar Formation. While the majority of the taxa in the Hadar fauna were C4 grazers, most show little change in the intensity of C4 food consumption over the 0.5 million-year interval sampled. Two taxa (equids and bovins) do show increases in C4 consumption through the Hadar Formation and into the younger, overlying Busidima Formation. Changes in the distributions of C4-feeders, C3-feeders and mixed-C3/C4-feeders in the sampled intervals are consistent with evidence of dietary reconstructions based on ecomorphology, and with habitats reconstructed using community structure analyses. Meanwhile, A. afarensis is one of many mammalian taxa whose C4 consumption does not show directional change over the intervals sampled. In combination with a wide range of carbon and oxygen isotopic composition for A. afarensis as compared to the other large mammal taxa, these results suggest that the C3/C4 dietary flexibility of A. afarensis was relatively unusual among most of its mammalian cohort.


Assuntos
Dieta , Hominidae/anatomia & histologia , Hominidae/classificação , Animais , Isótopos de Carbono/análise , Esmalte Dentário/química , Etiópia , Fósseis , Oxigênio/metabolismo
11.
Science ; 348(6241): 1326, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26089506

RESUMO

Hawks et al. argue that our analysis of Australopithecus sediba mandibles is flawed and that specimen LD 350-1 cannot be distinguished from this, or any other, Australopithecus species. Our reexamination of the evidence confirms that LD 350-1 falls outside of the pattern that A. sediba shares with Australopithecus and thus is reasonably assigned to the genus Homo.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Animais , Humanos
12.
Science ; 347(6228): 1352-5, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25739410

RESUMO

Our understanding of the origin of the genus Homo has been hampered by a limited fossil record in eastern Africa between 2.0 and 3.0 million years ago (Ma). Here we report the discovery of a partial hominin mandible with teeth from the Ledi-Geraru research area, Afar Regional State, Ethiopia, that establishes the presence of Homo at 2.80 to 2.75 Ma. This specimen combines primitive traits seen in early Australopithecus with derived morphology observed in later Homo, confirming that dentognathic departures from the australopith pattern occurred early in the Homo lineage. The Ledi-Geraru discovery has implications for hypotheses about the timing and place of origin of the genus Homo.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Animais , Etiópia , Fósseis , Humanos , Mandíbula/anatomia & histologia , Dente/anatomia & histologia
13.
Science ; 347(6228): 1355-9, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25739409

RESUMO

Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.


Assuntos
Evolução Biológica , Ecossistema , Sedimentos Geológicos , Hominidae , Animais , Etiópia , Fósseis
14.
J Hum Evol ; 75: 64-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25150896

RESUMO

Dating to more than four million years ago (Ma), the Mursi Formation is among the oldest of the Plio-Pleistocene Omo Group deposits in the lower Omo Valley of southwestern Ethiopia. The sedimentary sequence is exposed along a strip ∼35 km by 4 km, but it has received relatively little attention due to the difficult access to this area. Although expeditions to the lower Omo Valley between 1968 and 1973 focused primarily on the Usno and Shungura Formations, survey of the Mursi Formation produced a faunal collection of about 250 specimens deriving exclusively from the Yellow Sands area at the southern extent of the exposures. In 2009, we reinitiated an investigation of the formation by focusing on the most northern exposures, and a new fossil site, Cholo, was identified. Cholo is depositionally similar to the lowermost exposures at the Yellow Sands, although no stratigraphic correlation between the two localities has yet been made. The fossiliferous sediments at Cholo are capped by a prominent vitric tuff that is compositionally distinct from any other known tephra preserved in East African rift basins, including the only known vitric tuff at the Yellow Sands. The faunal assemblage of the Yellow Sands area presents interesting characteristics: the fossils generally show little weathering and include a large proportion of suids (44% of the mammalian fauna) and a small proportion of bovids (14%) compared with other Pliocene African sites. The sample is also unusual in the high frequency of deinotheres (7%). Taxon-specific stable carbon isotopic composition of the Mursi mammals tends to show generally higher proportions of C3 diets compared with other Pliocene sites in East Africa and Chad. This and the particular faunal proportions suggest that the environments represented by the Mursi Formation were more closed than those of other Pliocene sites.


Assuntos
Evolução Biológica , Fósseis , Vertebrados , África Oriental , Animais , Isótopos de Carbono/análise , História Antiga , Paleontologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/fisiologia
15.
PLoS One ; 9(7): e101516, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988115

RESUMO

The Whistler Squat Quarry (TMM 41372) of the lower Devil's Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47-50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505-45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b.


Assuntos
Fósseis/anatomia & histologia , Paleontologia , Animais , Biometria , Mamíferos/anatomia & histologia , Mamíferos/classificação , Texas
16.
J Hum Evol ; 62(3): 338-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21762952

RESUMO

The Hadar paleoanthropological site in Ethiopia preserves a record of hominin evolution spanning from approximately 3.45 Ma to 0.8 Ma. An angular unconformity just above the ca. 2.95 Ma BKT-2 complex divides the sediments into the Hadar Formation (ca. 3.8-2.9Ma) and the Busidima Formation (ca. 2.7-0.15 Ma). The unconformity is likely a response to a major tectonic reorganization in the Afar Depression, and activation of the As Duma fault near the Ethiopian Escarpment (west of Hadar) created a half-graben in which the Busidima Formation was deposited. The pattern and character of sedimentation in the region changed dramatically above the unconformity, as cut-and-fill channel conglomerates and silt-dominated paleosols that comprise the Busidima Formation stand in sharp contrast to the underlying deposits of the Hadar Formation. Conglomerate deposition has been related to both the perennial, axial paleo-Awash and ephemeral, escarpment-draining tributaries. Overbank silts have yielded fossils attributed to early Homo and Oldowan stone tools. Numerous tuffaceous deposits exist within the Busidima Formation, but they are often spatially limited, fine-grained, and reworked. Recent work on the tephrostratigraphic framework of the Busidima Formation at Hadar has identified at least 12 distinct vitric tephras and established the first geochemical-based correlations between Hadar and the neighboring project areas of Gona and Dikika. Compared to Gona and Dikika, where Busidima Formation sediments are exposed over large areas, the highly discontinuous sediments at Hadar comprise less than 40 m in composite section and are exposed over an area of <20 km(2), providing only snapshots into the 2.7-0.15 Ma window. The stratigraphic record at Hadar confirms the complex depositional history of the Busidima Formation, and also provides important details on regional stratigraphic correlations and the pattern of deposition and erosion in the lower Awash Valley reflective of its tectonic history.


Assuntos
Meio Ambiente , Sedimentos Geológicos , Geologia , Paleontologia , Animais , Evolução Biológica , Etiópia , Geografia , Hominidae
17.
J Hum Evol ; 53(5): 515-27, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17923150

RESUMO

Central to the debate surrounding global climate change and Plio-Pleistocene hominin evolution is the degree to which orbital-scale climate patterns influence low-latitude continental ecosystems and how these influences can be distinguished from regional volcano-tectonic events and local environmental effects. The Pliocene Hadar Formation of Ethiopia preserves a record of hominin paleoenvironments from roughly 3.5 to 2.2 Ma at a temporal resolution relevant to evolutionary change within hominins and other taxa. This study integrates the high-resolution sedimentological and paleontological records at Hadar with climate proxies such as marine core isotope, dust, and sapropel records. Consistent cycling observed both between and within fluvial and lacustrine depositional environments prior to 2.9 Ma at Hadar appears to be predominantly climatic in nature. In contrast a significant change in depositional facies after 2.9 Ma to sequences dominated by conglomerate cut-and-fill cycles indicates a strong tectonic signature related to regional developments in the Main Ethiopian Rift. While specific events seen in marine proxy records may have parallels in the Hadar environmental archive, their overall patterns of high versus low variability may be even more relevant. For example, periods of relatively high-amplitude climate oscillations between 3.15 and 2.95 Ma may be linked to noted size-related morphological changes within the Hadar Australopithecus afarensis lineage and a significant increase in more arid-adapted bovid taxa. Increased aridity in East Africa during this period is also indicated by peaks in eolian dust in the marine core record. Conversely, the dominant lacustrine phase at Hadar ca. 3.3 Ma coincides with the least variable period in several climate proxy records, including marine core foraminifera delta(18)O values and eolian dust concentration. This phase is also coeval with low insolation variability and a very distinct and significant long-term period of low dust percentage in circum-Africa marine cores.


Assuntos
Evolução Biológica , Clima , Sedimentos Geológicos/química , Hominidae/genética , Paleontologia , Animais , Análise por Conglomerados , Etiópia , Fósseis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA