Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Metabolomics ; 18(9): 74, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36104635

RESUMO

INTRODUCTION: Chestnut rot caused by the fungus Gnomoniopsis smithogilvyi is a disease present in the world's major chestnut growing regions. The disease is considered a significant threat to the global production of nuts from the sweet chestnut (Castanea sativa). Conventional fungicides provide some control, but little is known about the potential of biological control agents (BCAs) as alternatives to manage the disease. OBJECTIVE: Evaluate whether formulated BCAs and their secreted metabolites inhibit the in vitro growth of G. smithogilvyi. METHODS: The antifungal potential of BCAs was assessed against the pathogen through an inverted plate assay for volatile compounds (VOCs), a diffusion assay for non-volatile compounds (nVOCs) and in dual culture. Methanolic extracts of nVOCs from the solid medium were further evaluated for their effect on conidia germination and were screened through an LC-MS-based approach for antifungal metabolites. RESULTS: Isolates of Trichoderma spp., derived from the BCAs, significantly suppressed the pathogen through the production of VOCs and nVOCs. The BCA from which Bacillus subtilis was isolated was more effective in growth inhibition through the production of nVOCs. The LC-MS based metabolomics on the nVOCs derived from the BCAs showed the presence of several antifungal compounds. CONCLUSION: The results show that G. smithogilvyi can be effectively controlled by the BCAs tested and that their use may provide a more ecological alternative for managing chestnut rot. The in vitro analysis should now be expanded to the field to assess the effectiveness of these alternatives for chestnut rot management.


Assuntos
Ascomicetos , Fagaceae , Antifúngicos/farmacologia , Ascomicetos/fisiologia , Bactérias , Fagaceae/microbiologia , Metabolômica , Nozes , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
2.
Pathogens ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015028

RESUMO

The fungus Gnomoniopsis smithogilvyi is a significant threat to the production of sweet chestnut (Castanea sativa) nuts in Australia and worldwide. The pathogen causes nut rot, which leads to substantial production losses. Early and accurate diagnosis of the disease is essential to delineate and implement control strategies. A specific and sensitive multiplex PCR was developed based on the amplification of three barcode sequences of G. smithogilvyi. The assay reliability was enhanced by including the amplification of a host gene as an internal control. Primers were thoroughly evaluated in silico before assessing them in vitro. Primer annealing temperature and concentration were optimised to enhance the assay sensitivity and specificity. The assay detection limit ranged between 0.1 and 1.0 pg (5 and 50 fg/µL) of genomic DNA per reaction. No cross-reactivity was observed with genomic DNA from closely and distantly related fungal species. We also characterised Australian G. smithogilvyi isolates phenotypically and genotypically and found significant differences in morphologic and virulence traits of the isolates. An understanding of the virulence of G. smithogilvyi and the availability of a reliable and accurate diagnostic technique will enable earlier detection of the pathogen, which will contribute to effective control strategies for the disease.

3.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580281

RESUMO

TRPM8 is the main molecular entity responsible for cold sensing. This polymodal ion channel is activated by cold, cooling compounds such as menthol, voltage, and rises in osmolality. In corneal cold thermoreceptor neurons (CTNs), TRPM8 expression determines not only their sensitivity to cold, but also their role as neural detectors of ocular surface wetness. Several reports suggest that Protein Kinase C (PKC) activation impacts on TRPM8 function; however, the molecular bases of this functional modulation are still poorly understood. We explored PKC-dependent regulation of TRPM8 using Phorbol 12-Myristate 13-Acetate to activate this kinase. Consistently, recombinant TRPM8 channels, cultured trigeminal neurons, and free nerve endings of corneal CTNs revealed a robust reduction of TRPM8-dependent responses under PKC activation. In corneal CTNs, PKC activation decreased ongoing activity, a key parameter in the role of TRPM8-expressing neurons as humidity detectors, and also the maximal cold-evoked response, which were validated by mathematical modeling. Biophysical analysis indicated that PKC-dependent downregulation of TRPM8 is mainly due to a decreased maximal conductance value, and complementary noise analysis revealed a reduced number of functional channels at the cell surface, providing important clues to understanding the molecular mechanisms of how PKC activity modulates TRPM8 channels in CTNs.


Assuntos
Temperatura Baixa , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Canais de Cátion TRPM/metabolismo , Termorreceptores/metabolismo , Sensação Térmica , Nervo Trigêmeo/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Células Receptoras Sensoriais/metabolismo , Nervo Trigêmeo/citologia
4.
Cell Rep ; 30(13): 4505-4517.e5, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234483

RESUMO

TRPM8 is the main ion channel responsible for cold transduction in the somatosensory system. Nerve terminal availability of TRPM8 determines cold sensitivity, but how axonal secretory organelles control channel delivery remains poorly understood. Here we examine the distribution of TRPM8 and trafficking organelles in cold-sensitive peripheral axons and disrupt trafficking by targeting the ARF-GEF GBF1 pharmacologically or the small GTPase RAB6 by optogenetics. In axons of the sciatic nerve, inhibition of GBF1 interrupts TRPM8 trafficking and increases association with the trans-Golgi network, LAMP1, and Golgi satellites, which distribute profusely along the axonal shaft. Accordingly, both TRPM8-dependent ongoing activity and cold-evoked responses reversibly decline upon GBF1 inhibition in nerve endings of corneal cold thermoreceptors. Inhibition of RAB6, which also associates to Golgi satellites, decreases cold-induced responses in vivo. Our results support a non-conventional axonal trafficking mechanism controlling the availability of TRPM8 in axons and cold sensitivity in the peripheral nervous system.


Assuntos
Axônios/metabolismo , Temperatura Baixa , Organelas/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Axônios/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Mentol/farmacologia , Camundongos , Optogenética , Organelas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Termorreceptores/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Neurosci ; 39(41): 8177-8192, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471469

RESUMO

The cornea is extensively innervated by trigeminal ganglion cold thermoreceptor neurons expressing TRPM8 (transient receptor potential cation channel subfamily M member 8). These neurons respond to cooling, hyperosmolarity and wetness of the corneal surface. Surgical injury of corneal nerve fibers alters tear production and often causes dry eye sensation. The contribution of TRPM8-expressing corneal cold-sensitive neurons (CCSNs) to these symptoms is unclear. Using extracellular recording of CCSNs nerve terminals combined with in vivo confocal tracking of reinnervation, Ca2+ imaging and patch-clamp recordings of fluorescent retrogradely labeled corneal neurons in culture, we analyzed the functional modifications of CCSNs induced by peripheral axonal damage in male mice. After injury, the percentage of CCSNs, the cold- and menthol-evoked intracellular [Ca2+] rises and the TRPM8 current density in CCSNs were larger than in sham animals, with no differences in the brake K+ current IKD Active and passive membrane properties of CCSNs from both groups were alike and corresponded mainly to those of canonical low- and high-threshold cold thermoreceptor neurons. Ongoing firing activity and menthol sensitivity were higher in CCSN terminals of injured mice, an observation accounted for by mathematical modeling. These functional changes developed in parallel with a partial reinnervation of the cornea by TRPM8(+) fibers and with an increase in basal tearing in injured animals compared with sham mice. Our results unveil key TRPM8-dependent functional changes in CCSNs in response to injury, suggesting that increased tearing rate and ocular dryness sensation derived from deep surgical ablation of corneal nerves are due to enhanced functional expression of TRPM8 channels in these injured trigeminal primary sensory neurons.SIGNIFICANCE STATEMENT We unveil a key role of TRPM8 channels in the sensory and autonomic disturbances associated with surgical damage of eye surface nerves. We studied the damage-induced functional alterations of corneal cold-sensitive neurons using confocal tracking of reinnervation, extracellular corneal nerve terminal recordings, tearing measurements in vivo, Ca2+ imaging and patch-clamp recordings of cultured corneal neurons, and mathematical modeling. Corneal nerve ablation upregulates TRPM8 mainly in canonical cold thermoreceptors, enhancing their cold and menthol sensitivity, inducing a rise in the ongoing firing activity of TRPM8(+) nerve endings and an increase in basal tearing. Our results suggest that unpleasant dryness sensations, together with augmented tearing rate after corneal nerve injury, are largely due to upregulation of TRPM8 in cold thermoreceptor neurons.


Assuntos
Axônios/fisiologia , Temperatura Baixa , Córnea/inervação , Córnea/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPM/fisiologia , Sensação Térmica/fisiologia , Animais , Lesões da Córnea/fisiopatologia , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Neurológicos , Modelos Teóricos , Fibras Nervosas , Técnicas de Patch-Clamp , Lágrimas , Termorreceptores/fisiologia
6.
J Cell Physiol ; 232(12): 3677-3692, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28160495

RESUMO

Dendrite arbor growth, or dendritogenesis, is choreographed by a diverse set of cues, including the NMDA receptor (NMDAR) subunits NR2A and NR2B. While NR1NR2B receptors are predominantly expressed in immature neurons and promote plasticity, NR1NR2A receptors are mainly expressed in mature neurons and induce circuit stability. How the different subunits regulate these processes is unclear, but this is likely related to the presence of their distinct C-terminal sequences that couple different signaling proteins. Calcium-calmodulin-dependent protein kinase II (CaMKII) is an interesting candidate as this protein can be activated by calcium influx through NMDARs. CaMKII triggers a series of biochemical signaling cascades, involving the phosphorylation of diverse targets. Among them, the activation of cAMP response element-binding protein (CREB-P) pathway triggers a plasticity-specific transcriptional program through unknown epigenetic mechanisms. Here, we found that dendritogenesis in hippocampal neurons is impaired by several well-characterized constructs (i.e., NR2B-RS/QD) and peptides (i.e., tatCN21) that specifically interfere with the recruitment and interaction of CaMKII with the NR2B C-terminal domain. Interestingly, we found that transduction of NR2AΔIN, a mutant NR2A construct with increased interaction to CaMKII, reactivates dendritogenesis in mature hippocampal neurons in vitro and in vivo. To gain insights into the signaling and epigenetic mechanisms underlying NMDAR-mediated dendritogenesis, we used immunofluorescence staining to detect CREB-P and acetylated lysine 27 of histone H3 (H3K27ac), an activation-associated histone tail mark. In contrast to control mature neurons, our data shows that activation of the NMDAR/CaMKII/ERK-P/CREB-P signaling axis in neurons expressing NR2AΔIN is not correlated with increased nuclear H3K27ac levels.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dendritos/enzimologia , Hipocampo/enzimologia , Histonas/metabolismo , Neurogênese , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Acetilação , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Dendritos/efeitos dos fármacos , Idade Gestacional , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Mutação , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Peptídeos/farmacologia , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Transfecção
7.
PLoS One ; 11(8): e0160728, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494336

RESUMO

BACKGROUND: Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. AIM: We compared the efficacy of multiple testing protocols against several "antimicrobial" film surfaces. METHODS: Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a "dried droplet", and a "transfer" method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. RESULTS: Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. CONCLUSIONS: Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/prevenção & controle , Infecção Hospitalar/prevenção & controle , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Staphylococcus/efeitos dos fármacos , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/microbiologia , Escherichia coli/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , Staphylococcus/isolamento & purificação
8.
PLoS One ; 10(10): e0139314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426259

RESUMO

Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.


Assuntos
Temperatura Baixa , Modelos Teóricos , Canais de Cátion TRPM/metabolismo , Termorreceptores/metabolismo , Sensação Térmica/fisiologia , Animais , Simulação por Computador , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Análise Numérica Assistida por Computador
9.
PLoS One ; 9(4): e94037, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705401

RESUMO

Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2-25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.


Assuntos
Dendritos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hipocampo/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Ratos , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA